The Economics of Private Equity Funds*

Andrew Metrick Ayako Yasuda

University of Pennsylvania, The Wharton School, Department of Finance

Preliminary Draft: Please do not cite without permission

March 13, 2007

Abstract: This paper analyzes the economics of the private equity industry using a novel model and dataset. We obtain data from a large investor in private equity funds, with detailed records on 249 funds raised between 1992 and 2006. Fund managers earn revenue from a variety of fees and profit-sharing rules. We build a model to estimate the expected revenue to managers as a function of these rules, and we test how this estimated revenue varies across the characteristics of our sample funds. We find major differences between venture capital (VC) funds and buyout (BO) funds – the two main sectors of the private equity industry. In general, BO fund managers earn lower revenue per managed dollar than do managers of VC funds, but nevertheless these BO managers earn substantially higher revenue per partner and revenue per professional than do VC managers. Furthermore, BO managers build on their prior experience by raising larger funds, which leads to significantly higher revenue per partner and per professional, despite the fact that these larger funds have lower revenue per dollar. Conversely, while prior experience by VC managers does lead to higher revenue per partner in later funds, it does not lead to higher revenue per professional. Taken together, these results suggest that the BO business is more scalable than the VC business. These results can help explain why the late 1990s growth of the VC sector was a failure, while the BO sector has continued to grow in the 21st century.

JEL classification: G1, G2
Keywords: private equity; venture capital; fund managers;

* We thank Andy Abel, Stan Baiman, Ben Berenstein, Tony Berrada, John Core, Frank Diebold, Bernard Dumas, Paul Gompers, Gary Gorton, Bob Holthausen, Steve Kaplan, Gwyneth Ketterer, Josh Lerner, Steve Lipman, Florencio Lopez-de-Silanes, Richard Metrick, Ludovic Phalippou, William Sahlman, Cathy Schrand, Robert Stambaugh, and the seminar/conference participants at the Amsterdam Business School, EVI Conference (HBS), HEC Lausanne, Wharton, Yale, the 2nd Empirical Asset Pricing Retreat, and the EFMA annual meeting (Madrid) for helpful discussions. We gratefully acknowledge financial support from Rodney L. White grants, a Morgan Stanley Research Fellowship, and a NASDAQ Research Fellowship. Wonho Choi provided invaluable help on the simulation model of Section III, and Fei Fang, Darien Huang, Jen-fu Lee, and Charles Park provided worked tirelessly to gather and code the data. We especially thank a (currently) anonymous investor for providing access to their data. All errors and omissions are our own.
I. Introduction

Worldwide, private equity funds manage approximately $1 trillion of capital. About two-thirds of this capital is managed by buyout funds, where leverage can multiply the investment size by three or four times base capital. In the early 21st century, these buyout funds are responsible for about one-quarter of all global M&A activity. Venture capital funds – the other main type of private equity – raised nearly $160 billion of capital during the boom years of 1999 and 2000, and made early investments in recent successes like Google (in the United States), Skype (in Europe), and Baidu (in Asia). Overall, private equity funds play an increasingly important role as financial intermediaries in addition to their significant day-to-day involvement as board members and advisors. Nevertheless, relatively little is known about industrial organization of the private equity sector, mostly due to data limitations. This paper aims to fill that gap using a database of fund characteristics, past performance, and fund terms provided by one of the largest private-equity investors in the world.

Virtually all private-equity funds are organized as limited partnerships, with private equity firms serving as the general partner (GP) of the funds, and large institutional investors and wealthy individuals providing the bulk of the capital as limited partners (LPs). These limited partnerships typically last for 10 years, and partnership agreements signed at the funds’ inceptions clearly define the expected payments to GPs. These payments consist of both fixed and variable components. While the fixed component resembles pricing terms of mutual-fund and hedge-fund services, the variable
component has no analogue among most mutual funds and is quite different from the variable incentive fees of hedge funds.¹

Successful private equity firms stay in business by raising a new fund every 3 to 5 years. If the current fund performs well, and LPs interpret that performance as “skill” rather than “luck”, investors’ demand curve for the new fund will shift out, with the equilibrium conditions requiring that LPs earn their cost-of-capital after payments to the GP. In response to this demand shift, GPs may alter the terms of the new fund so as to earn higher expected revenue for each dollar under management. Alternatively, they may increase the size of their next fund. They may also do both. Raising the size of the fund may entail additional costs, depending on the production function for the underlying private-equity activities. Do successful private equity managers earn higher revenue by setting higher prices, raising larger funds, or both? Do these strategies differ between venture capital (VC) and buyout (BO) funds? What can these strategies tell us about organizational economics of private equity funds? In this paper, we address these questions using a novel model and dataset.

We are not the first authors to investigate the revenue-based terms of private equity partnerships. The seminal paper on this topic is Gompers and Lerner (1999), who focus exclusively on venture capital funds and explore the cross-sectional and time-series variation in the fund terms. Litvak (2004) addresses similar issues from a legal perspective, and extends the Gompers and Lerner analysis to consider several additional terms from the partnership agreements. Neither of these papers addresses buyout funds –

the largest part of our sample and the part with the most variation — nor do they use an option-pricing framework to value the variable-revenue components. As we will see, many of the most important conclusions are driven by variation that can only be captured in this framework. On the modeling side, Conner (2005) uses simulation to estimate the value of various pricing terms, but he takes an ex-post perspective (which requires specific assumptions about fund returns), rather than the ex-ante perspective (based on equilibrium relations) taken in our paper.²

In Section II, we discuss our data sources, define the key revenue variables used in the paper, and summarize these variables for our sample funds. Our main data set is provided by one of the largest LPs in the world, which we refer to as “the Investor”. In the course of making investment decisions in private equity funds, the Investor requires potential GPs to provide information about internal fund organization in addition to providing standard documentation of fund terms. The Investor provided us access to these data for 249 funds raised between 1992 and 2006, of which 98 are VC funds and 151 are BO funds.

In Section III, we develop an expected-revenue model for private equity firms. Section III.A discusses the model for fixed revenue (“management fees”), Section III.B discusses the model for the largest component of variable revenue (“carried interest”), and Section III.C discusses two other components of variable revenue that are specific to BO funds: “transaction fees” and “monitoring fees”. (All of these terms will be defined in Section II.) As compared to previous models in the literature, our main contributions

² There is also a related and growing literature that examines the performance of private equity funds. See, among others, Woodward (2004), Cochrane (2005), Kaplan and Schoar (2005), and Phalippou and Gottschalg (2006). We abstract from all performance issues by positing an equilibrium condition where, in expectation, LPs receive exactly their cost of capital. This equilibrium condition is discussed in Section III.B.1.
here are to adopt an option-pricing framework for the valuation of variable revenue, and to anchor all of our key model inputs to industry data. Section III.D summarizes the outputs of the model. This framework allows us to identify several important determinants of fund revenue that have not previously been measured.

Section IV provides the main empirical results of the paper. Using the revenue estimates from the models of Section III, we empirically test for the relationship of various revenue measures with fund characteristics and past performance. We find striking differences between VC and BO funds. In general, BO funds earn lower revenue per managed dollar than do venture capital funds, but nevertheless these BO funds earn substantially higher revenue per partner and revenue per professional than do VC funds. Furthermore, BO funds build on past success by raising larger funds, which leads to significantly higher revenue per partner and per professional, despite the fact that these larger funds have lower revenue per dollar. Conversely, while past success by VC funds does lead to higher revenue per partner, it does not lead to higher revenue per professional. Section V concludes the paper.

II. Data and Summary Statistics

In this section, we describe the dataset and define some key terms.

A. Data sources

We construct our dataset from several sources. Our main data source is the Investor, from whom we obtained detailed information on terms and conditions for 249 private equity funds raised between 1992 and 2006. In addition to terms and conditions,
we also obtained information on the fund management firms’ past investment experience, returns, investment focus, and team composition. We use this data to construct expected-revenue measures for each fund manager. In addition, we use several other sources to supplement and verify information from the Investor. One is Galante’s *Venture Capital and Private Equity Directory* (Asset Alternatives, 2006), which provides a nearly comprehensive reference of publicly available information about private equity funds. This publication enables us to cross-check some of the information provided by the Investor and fill in occasional omissions, but does not provide any information about fund terms or past returns. In recent years, some fund-level return data has become publicly available. This data is summarized in the *Private Equity Performance Monitor 2006* (Private Equity Intelligence, 2006), which we use to benchmark the performance of our sample funds. This benchmarking is aided by industry-level returns data from the *Investment Benchmarks Reports* published by Venture Economics (2006a and 2006b).

B. Definitions and Summary Statistics

Table I presents summary statistics for our sample. The sample consists of 249 funds, of which 98 are VC funds and 151 are BO funds. Overall, about three-quarters of these funds focus on investments in the United States, and the majority of the remaining funds are focused on investments in Europe. Unlike mutual funds, private equity funds do not have a well-defined level of assets under management. Instead, GPs receive commitments from LPs to provide funds when needed for new investments. The total amount of such LP commitments for any given fund is defined as the *committed capital* of the fund. The median VC fund in our sample has $225M in committed capital, and the
median BO fund has $600M. Note that the interquartile range for the size of BO funds is from $300M to $1500M, versus a much smaller range of $100M to $394M for VC funds.

Table I also shows that the median GP of a VC fund has raised one fund prior to the sample fund, has been in business for three years, and has four partners; the median GP of a BO fund has raised one fund prior to the sample fund, has been in business for 5.5 years and has five partners. Overall, these are small organizations, with the median VC fund having only 10 professionals (= partners + non-partners) and the median BO fund having 13 professionals. The largest VC fund in our example is staffed by less than 50 professionals; the largest buyout fund is staffed by less than 100. Outside of our sample, Asset Alternatives (2006) reports only a few private equity organizations with more than 100 investment professionals.

In materials provided to the Investor, GPs must provide information about typical investment size, which then implies an expected number of investments for each fund. We summarize this expected number in the last row of Panels A and B. The median VC fund expects to make 20 investments, which yields five investments per partner at that fund. Since each investment typically requires significant work from a venture capitalist, it is difficult for this ratio to grow much higher, and few VC funds expect to make more than ten investments per partner. BO funds tend to make larger investments and require even more intense involvement on each one, with the median fund making only 12 investments, or 2.4 per partner. In the revenue model of Section III.B, the expected number of investments plays an important role in driving the overall volatility of the fund portfolio, which in turn has a significant effect on the expected present value of revenue.
GPs earn fixed revenue – which is not based on the performance of the fund – through management fees. To see how management fees are calculated, we need to define several terms. Over the lifetime of the fund, some of the committed capital is used for these fees, with the remainder used to make investments. We refer to these components of committed capital as lifetime fees and investment capital, respectively. At any point in time, we define the invested capital of the fund as the portion of investment capital that has already been invested into portfolio companies. Net invested capital is defined as invested capital, minus the cost basis of any exited investments. Similarly, contributed capital is defined as invested capital plus the portion of lifetime fees that has already been paid to the fund, and net contributed capital is equal to contributed capital minus the cost basis of any exited investments. The typical fund has a lifetime of ten years, with general partners allowed to make investments in new companies only during the first five years (the investment period), with the final five years reserved for follow-on investments and the exiting of existing portfolio companies.

Most funds use one of four methods for the assessment of management fees. Historically, the most common method was to assess fees as a constant percentage of committed capital. For example, if a fund charges 2 percent annual management fees on committed capital for ten years, then the lifetime fees of the ten-year fund would be 20 percent of committed capital, with investment capital comprising the other 80 percent. In recent years, many funds have adopted a decreasing fee schedule, with the percentage falling after the investment period. For example, a fund might have a 2 percent fee during five-year investment period, with this annual fee falling by 25 basis points per year for the next five years.
The third type of fee schedule uses a constant rate, but changes the basis for this rate from committed capital (first five years) to net invested capital (last five years). Finally, the fourth type of fee schedule uses both a decreasing percentage and a change from committed capital to net invested capital after the investment period. For any fee schedule that uses net invested capital, the estimation of lifetime fees requires additional assumptions about the investment and exit rates. In Section III.A, we discuss the assumptions used in our model, and the data behind these assumptions.

The top half of Table II presents summary statistics on management-fee terms for the sample funds. The most common initial fee level is 2 percent, though the majority of funds give some concessions to LPs after the investment period is over; e.g., switching to invested capital basis (42.7 percent of VC funds and 83.0 percent of BO funds), lowering the fee level (57.9 percent of VC funds and 46.6 percent of BO funds), or both (16.3 percent of VC funds and 37.7 percent of BO funds). Based on these facts, we should expect lifetime fees to be less than 20 percent of committed capital for most funds. Consistent with this expectation, in untabulated results we find that median level of lifetime fees is 15 percent of committed capital for all funds in our sample, with an interquartile range between 12 and 18 percent.

While management fees are the only source of fixed revenue for a GP, variable (performance based) revenue can come from several sources: carried interest, transaction fees, and monitoring fees. Of these three sources, carried interest tends to receive the most attention from all parties and provides the largest portion of expected variable revenue for most funds. In our discussion of carried interest, it is helpful to distinguish among four different concepts: carry level, carry basis, carry hurdle, and
carry timing. The carry level refers to the percentage of “profits” claimed by the general partner. The carry basis refers to the standard by which profits are measured. The carry hurdle refers to whether a GP must provide a preset return to LPs before collecting any carried interest and, if so, the rules about this preset return. Finally, carry timing, not surprisingly, refers to the set of rules that govern the timing of carried interest distributions. To see how these terms work in practice, consider a simple case with a carry level of 20 percent, a carry basis of committed capital, no hurdle rate, and carry timing that requires the repayment of the full basis before GPs receive any carry. Under these terms, LPs would receive every dollar of exit proceeds until they had received back their entire committed capital, and then the GPs would receive 20 cents of every dollar after that. Below, we discuss the typical types of variations in these terms, with summary statistics shown in the bottom half of Table II.

The overwhelming majority of funds – including all 151 BO funds – use 20 percent as their carry level. Among the 98 VC funds, one fund has a carry level of 17.5 percent, three funds have 25 percent, and one fund has a carry level of 30 percent. The exact origin of the 20 percent focal point is unknown, but previous authors have pointed to Venetian merchants in the middle ages, speculative sea voyages in the age of exploration, and even the book of Genesis as the source.³ Notwithstanding this tiny variation in the carry level, other fund terms in the model will give rise to significant variation in expected carried interest.

There are two main alternatives for the carry basis. The first alternative – carry basis equal to committed capital – is used by 93 percent of the VC funds and 84 percent of the BO funds our sample. The second alternative – carry basis equal to investment

³ See Kaplan (1999) and Metrick (2006) for references and discussion.
capital – is used by the remaining funds in the sample. The use of investment capital on the carry basis can have a large effect on the amount of carried interest earned by the fund. As a first approximation, for a successful fund that earns positive profits – ignoring the effect of risk and discounting – a change in basis from committed capital to investment capital would be worth the carry level multiplied by lifetime fees.

The effect of a hurdle return on expected revenue is greatly affected by the existence of a catch-up return for the GP. As an illustration of hurdle returns with a catch-up, consider a $100M fund with a carry percentage of 20 percent, a carry basis of all committed capital, a hurdle return of 8 percent, and a 100 percent catch-up. We’ll keep things simple and imagine that all committed capital is drawn down on the first day of the fund, and that there are total exit proceeds of $120M, with $108M of these proceeds coming exactly one year after the first investment, $2M coming one year later, and $10M coming the year after that. Under these rules, all $108M of the original proceeds would go to the LPs. This distribution satisfies the 8 percent hurdle rate requirement for the $100M in committed capital. One year later, the catch-up provision implies that the whole $2M would go to the GPs; after that distribution they would have received 20 percent ($2M) out of the total $10M in profits. For the final distribution, the $10M would be split $8M for the LPs and $2M for the GPs.

Beyond this simple example, the calculations quickly become unwieldy to handle without a spreadsheet. The key idea is that, even with a hurdle return, the GPs with a catch-up still receive the same fraction of the profits as long as the fund is sufficiently profitable. In this example, the fund made $20M of profits ($120M of proceeds on $100M of committed capital), and the GPs received 20 percent ($4M) of these profits. A
fund with a catch-up percentage below 100% would still (eventually) receive 20 percent of the profits, albeit at a slower pace than the fund in the above example. If, however, the fund had only earned $8M or less of profits over this time period, then all these profits would have gone to the LPs.

Table II shows that hurdle returns are much more prevalent among buyout funds than among VC funds (92% versus 56%). Among funds with a hurdle rate, the modal rate of 8 percent is used by about two-thirds of the VC funds and three-quarters of the BO funds. Virtually all funds with a hurdle use a rate between six and ten percent. The majority of funds with a hurdle have a catch-up rate of 100 percent (not shown in the table), and most of the remaining funds have a catch-up rate of 80 percent.

The final element of carried interest to be discussed is carry timing. In the discussion so far, we have proceeded under the assumption that GPs must return the entire carry basis to LPs before collecting any carried interest. The reality can be quite different, with funds using a variety of rules to allow for an early collection of carried interest upon a profitable exit. When such early carry is taken, the LPs typically have the ability to “clawback” these distributions if later performance is insufficient to return the full carry basis. In the present version of the model, we have not incorporated any of these variations – we assume that all funds are using the base-case terms with a return of the full basis before any carry is collected.

Aside from carried interest, the other two components of variable revenue are transaction fees and monitoring fees. Both of these fees are common features for BO funds, and are rare for VC funds. When a BO fund buys or sells a company, they effectively charge a transaction fee, similar to the M&A advisory fees charged by
investment banks. While this fee is rolled into the purchase price, the GP can still benefit if they own less than 100 percent of the company and if they share less than 100 percent of these transaction fees with their LPs. About 82 percent of BO fund agreements require that GPs share at least some portion of these transactions fees with their LPs, with one-third of all funds required to return all transaction fees to LPs. Another third of funds use a 50/50 sharing rule between GPs and LPs, with most of the remaining funds allocating between 50 and 100 percent for the LPs. While VC funds often have these sharing rules written into their partnership agreements, transaction fees are nevertheless rare in VC transactions and thus are not covered in our analysis.

In addition to transaction fees, BO funds often charge a monitoring fee to their portfolio companies. In most cases, these fees are shared with LPs receiving 80 percent and GPs receiving 20 percent. We did not consistently code for the differences in the sharing rule for monitoring fees, so in our model we assume all BO funds use the same 80/20 rule. While there is no set schedule for these fees, industry practitioners have told us that these fees range between one and five percent of EBITDA each year, with smaller companies falling on the higher side of that range. In Section III.C, we discuss our method for modeling these fees. As with transaction fees, monitoring fees are rare for VC funds, so we do not include them in our estimates of VC fund revenue.

III. A Model of Expected Revenue for Private Equity Funds

In this section, we discuss our models for the present value of GP revenue. Section III.A presents a model of management fees that takes account of differences observed in our sample. Section III.B presents a model for carry revenue, based on a risk-
neutral option-pricing approach. Section III.C append a model for transaction fees and monitoring fees onto the model of Section III.B. Section III.D summarizes the model outputs for some benchmark cases.

A. Management Fees

In our model, we assume that funds are fully invested at the end of investment period. Using quarterly cash-flow data drawn from over 500 completed funds\(^4\), we construct size-weighted average investment pace of VC and BO funds, respectively, and use annualized versions of the empirically-derived investment pace as inputs in our model. For example, a 10-year VC fund that has a 5-year investment period invests 30%, 24%, 31%, 12%, and 3% of its investment capital in years one through five, respectively. For BO funds, the pace is 26%, 23%, 25%, 18%, and 8%.

For exits, we take the investment pace above as given, and use simulations to draw random time to exit according to the same exponential distribution as used in the carry model of Section III.B. For the benchmark case, we assume that VC funds make 25 investments per fund and that each investment is equal in size. For buyout funds, the benchmark case uses 11 investments. Panel A of Table III reports an example calculation for a BO fund with a five-year investment period. In this example, the net invested capital grows for the first 3 years as the bulk of new investments are made and relatively few exits occur, but starts declining before the end of investment period as the investment pace slows down and the exit pace increases.

\(^4\) We thank Private Equity Intelligence for providing us with this data.
The amount of management fees is a function of fee level, fee basis, committed capital, net invested capital, and the establishment cost of the fund.\(^5\) For each fund in our sample, we solve for the exact investment capital and lifetime fees such that

\[
\text{Committed capital} = \text{investment capital} + \text{lifetime fees} + \text{establishment cost} \quad (1)
\]

Since fees are a contractual obligation of the limited partners, we treat these fees as a riskfree revenue stream to the GP with a five percent discount rate.\(^6\) Using this discount rate, we obtain the PV of management fees for each fund. Panel B of Table III shows an example for a $100M BO fund that charges 2% fees on committed capital for the first 5 years, 2% fees on net invested capital for the next 5 years, and has 1% establishment cost; the lifetime fees and PV of management fees are $12.77M and $11.07M, respectively.

B. Carried Interest

For GPs, carried interest is like a fractional call option on the total proceeds of all investments, with this fraction equal to the carry level and the strike price of the call equal to the carry basis. In our model, we use simulation to obtain the exit dates and returns for each of the underlying investments, and then we use risk-neutral valuation to estimate the carried-interest option on these investments. For a portfolio of publicly

\(^5\) General establishment cost for the fund is charged to the fund. Funds set a maximum amount that GPs are allowed to charge either as dollar amounts or % of fund size. We assume that the GPs charge the maximum amount allowed in the partnership agreement. A common maximum is $1 million.

\(^6\) If LPs default on their fee obligations, then they forfeit all current fund holdings to the partnership. Since these holdings typically exceed the future fee obligations, the fee stream is effectively collateralized and can be treated as being close to riskfree for the GPs.
traded assets with known volatilities and expiration dates, this process would be conceptually straightforward. In the private-equity environment, however, we have to deal with several complications.

1) Private equity investors provide valuable services (time, contacts, reputation) in addition to their cash investments. How do these services get incorporated into the option-pricing problem?

2) How can we estimate the volatility of the underlying (untraded) investments?

3) Each investment in a private-equity portfolio has an unknown exit date. How can this be incorporated into an option-pricing framework?

4) Standard option-pricing methods require strong no-arbitrage assumptions. How can we reconcile these assumptions with the reality of illiquid private markets?

We discuss our approach for handling each of these complications in Sections B.1, B.2, B.3, and B.4, respectively. In Section B.5, we present our model of carried interest and discuss the outputs of this model for several typical structures.

B.1 – The Value of Private–Equity Services

In every transaction, a GP invests dollars, but also invests time, energy, and a share of their reputation. Thus, following a transaction, the “market valuation” of the fund’s stake should include not only the dollars invested, but also some expected value of these non-pecuniary components. To capture these components, we posit a partial-
equilibrium framework where GPs invest if and only if the value of their investment is equal to the cost of the investment, where this equality is net of any revenue paid to GPs.

To model this decision, we start with the cost side. Suppose that a fund invests I_i in a company i, with this I_i investment comprising some fraction f of the investment capital of the fund. Then, from the perspective of a limited partner, if we assign a pro rata share of the lifetime fees to this investment, the full cost ($= LP\ cost$) of the investment would be $f^*\ committed\ capital\ of\ the\ fund$. Thus, we can write the LP cost in terms of I_i as

$$LP\ cost_i = I_i^* \frac{\text{committed capital}}{\text{investment capital}}.$$ \hspace{1cm} (2)

Now, on the benefit side, the value, V_i, that belongs to the fund can be divided into two components. The $GP\ value_i$ represents all variable revenue from this investment: carried interest plus transactions fees plus monitoring fees. The $LP\ value_i$ represents everything else: $LP\ value_i = V_i - GP\ value_i$. In the absence of principal-agent conflicts, a GP would invest if and only if $LP\ value_i \geq LP\ cost_i$. To pin down the LP value, we assume a competitive market for private equity investment, where fund managers capture all the rents for the scarce skills, so that $LP\ value_i = LP\ cost_i$. Thus, the value of the underlying asset is

$$V_i = LP\ value_i + GP\ value_i = LP\ cost_i + GP\ value_i.$$ \hspace{1cm} (3)
Let GP value be the sum of the GP value, \(i = 1, \ldots, N \), where \(N \) is the number of investments in a fund. Similarly, let \(V \) be the sum of \(V_i \). Let \(GP\% \) represent the expected percentage of each investment that belongs to the GP: \(GP\% = \text{GP valuation} / V \). Then, summing over \(i = 1, \ldots, N \), dividing both sides of (3) by \(V \), and rearranging terms we have

\[
1 = \frac{\text{LP Cost}}{V} + \frac{\text{GP Value}}{V} = \frac{\text{LP cost}}{V} + \frac{GP\%}{V} \\
\Rightarrow V = \frac{\text{LP Cost}}{1 - GP\%} \tag{4}
\]

Equation (4) is our key equilibrium condition. A graphical illustration of this condition is given in Figure 1. Consider an investment that would be worth $1 to a passive investor. In equilibrium, the price of this asset to passive investors would also be $1. For an active investor, however, the value of the asset may be greater than $1. Let \(b \) represent the increased value over some unknown holding period, as shown on the left-axis of Figure 1. Such increased value could come from many sources: one simple case would be that the investor provides below-cost management services to the company. (If \(b \) is zero or negative, then presumably the active investor would need to find another line of work.) If these value-added services are bundled with an ownership stake, then the investor should be able to demand a discount from the $1 price, since the present owners will see the value of their remaining stake increase with the value add. In Figure 1, this discount is shown on the left-axis as \(a \). After his discount, the fund pays \($I_i = $1-a \) for each \$1+b value of the asset, so that \$(a + b)\) represents the excess value to the fund.\(^7\)

\(^7\) Hsu (2004) finds that experienced VCs actually do receive price breaks as compared to less-experienced VCs. One could also interpret \$a\) as representing selection skill of the manager, who may be able to find
On the right-hand axis, we show one example of how this value is allocated. In expectation, the GP value is equal to GP% * (1+b), where GP% is a function of the variable revenue terms in the partnership agreement. Furthermore, if the fund pays $1-a for an investment, then the LP cost of that investment will be $1-a * (committed capital / investment capital). The difference between the investment cost of $1-a and the LP cost is the pro-rata share of management fees. (In this example, the management fees are shown as larger than $a, but this does not have to be true.) Our equilibrium condition of Equation (4) requires that this LP cost be exactly equal to the LP value: to achieve this equilibrium, the fund adjusts the terms of its partnership agreement so that GP% and management fees completely consume any surplus. In this equilibrium, LPs receive exactly their cost of capital.

B.2 – Volatility

To estimate volatility for investments by VC funds, we rely on Cochrane (2005). In this paper, Cochrane begins with a CAPM model of expected (log) returns for venture capital investments. He then uses a relatively comprehensive database of venture capital investments to estimate the parameters of the model. In general, this data suffers from sample-selection problems: we only observe returns for a company upon some financing or liquidation event. To solve this problem, Cochrane simultaneously estimated thresholds for IPOs and bankruptcy liquidations. With these thresholds in place, the parameters of the CAPM equation can be estimated, and these parameters then imply means and standard deviations for returns. For the whole sample, Cochrane estimated a volatility of 89 percent. We round this estimate up to 90 percent in our simulations.

investments at “below-market” prices. Sorenson (2007) builds a model of venture capital to disentangle such selection ability (= $a in our framework) from value-adding activities ($b in our framework).
For BO funds, we do not have access to a database of investments that would allow a replication of the Cochrane analysis. Instead, we rely on the fact that BO funds sometimes invest in public companies (and take them private) or in private companies that are comparable in size to small public companies. Woodward (2004) finds that the average beta of all buyout funds is approximately equal to one. In general, funds achieve this beta by purchasing low-beta companies and levering them up. Since this levering would also affect the idiosyncratic risk of these companies, we will estimate the volatility of BO investments as being the same as a unit beta public stock of similar size. For a median BO fund of $600M making 12 investments, the average equity investment would be $50M and typical leverage of 2:1 would imply a $150M company. For a company of this size we use a small-stock volatility estimate of 60 percent from Campbell et al (2001).

B.3 – Unknown Exit Dates

Carried interest is an option on a private equity portfolio, but the underlying investments in this portfolio have unknown exit dates. Metrick (2006) shows that the median first-round VC investment has an expected holding period of five years, with annual probability of exit close to 20 percent. We use this estimate for all VC and BO investments, and assume that exits follow an exponential distribution, with an exit rate of $q = 0.20$ per year. We also assume that exits are uncorrelated with underlying returns. While this assumption is certainly false, it is computationally expensive to handle these correlations on large portfolios, and in robustness checks using small portfolios we have not found any clear pattern between correlation structure and expected carried interest.
B.4 – No-Arbitrage Assumptions

Our model uses a risk-neutral approach, which is based on strong no-arbitrage conditions. Since private securities are illiquid, the reality is far from this perfect-markets ideal. Nevertheless, this is the same assumption used in all real-option models on untraded assets, and conceptually does not require any more of a leap than does any other discounted-cash-flow analysis on such assets. It is important to note, however, that the valuation is only applicable for an investor that can diversify the non-systematic risks. The GPs cannot do this, as in general they will be unable to diversify the risk in their portfolio companies. Hence, the option-based valuation of carried interest should be interpreted as proportional to the expected value to an outside “large” investor that holds some small claim on GP revenue. It should not be interpreted as expected compensation to the GPs.

B.5 – A Model for Carried Interest

The carry model uses the same base assumptions as the fee model. The VC fund has $100M in committed capital, and makes 25 investments distributed as discussed in Section III.A. Asset returns are modeled using a continuous-time log-normal return model. First, we simulate investment exit times using an exponential distribution with an annual exit rate of 20 percent. Since funds typically last for 10 years, with up to 2 years of extension subject to LPs’ approval, we truncate the maximum exit time at 12 years from the fund inception date.
Second, we simulate investment returns using a volatility of 90 percent, and pairwise cross correlation of 50 percent between any two investments alive at the same time.\(^8\) Then, for each simulation path, we use the relevant fund terms to allocate the proceeds between the GP and LPs at the time of each exit. Our benchmark case has a 20% carry level, a carry basis of committed capital, and no hurdle rate. We examine the effects of variation in carry terms on the PV of carried interest along four dimensions (level, basis, hurdle rate, and number of investments). The average present value of carried interest as of the fund inception date is then calculated as the average of 100,000 simulation trials in each iterative step.

To complete the simulation, we set the initial value of \(V \) equal to committed capital = $100M and compute the average PV of carried interest. Then, we set \(GP\% = \frac{\text{average PV of carried interest}}{\text{committed capital}} \) and we re-estimate the model, using the same 100,000 draws, with

\[
V = \frac{\text{LP cost}}{(1 - GP\%)}. \tag{5}
\]

We iterate this process until we converge to a \(GP\% \) that is consistent with \(V \) in equation (5), so that \(GP\% \) is constant in successive iterations. With this solution, we have the PV of carry = \(GP\% \times V \) for the base case. We repeat these steps for each set of fund terms.

In the model for BO funds, all steps remain the same, except that the base case has a $500M fund – a level that matters for the transaction fees, as discussed below. This

\(^8\) This pairwise correlation is arbitrary and is set to be a reasonable upper bound for pairs of companies in the same industry. In later versions of the model, we plan to simulate the model under a variety of assumptions for this correlation.
base case has 11 investments per fund, a 60 percent volatility for each investment, and 20 percent pairwise correlation between investments. This pairwise correlation is chosen to match the high end of the correlation between small-company investments in the same industry as reported in Campbell et al. (2001).

C. Transaction Fees and Monitoring Fees

For BO funds, we append transaction and monitoring fees to the carry model of Section III.B. For a transaction fee schedule, we consulted with industry practitioners and adopted a simplified schedule of two percent on the first $100 million, one percent on the next $900 million, and fifty basis points on any amount over $1 billion. In practice, fee schedules are more nuanced and also drop off further at high levels. Since these high levels are rarely reached in our simulations, we keep this simplified schedule. Fees are assessed both for the initial investment time (asset purchase) and at the random exit time (asset sale). The LP share of these fees is treated the same as any other distribution.

While transaction fees have benchmarks in M&A advisory fees, the monitoring fees are more difficult to benchmark. In informal discussions with practitioners, we were told that these annual fees can vary between one and five percent of EBITDA, with smaller companies at the high end of this scale and larger companies at the low end. Typically, a BO fund signs a contract with its portfolio company to provide monitoring services over a fixed time period. If the company has an exit before this period expires, then the fund usually receives a lump sum payment at exit for the remaining present value of the contract. For computational convenience, we assess all monitoring fees at exit, assuming a five-year contract with annual fees at two percent of EBITDA.
Assuming a constant valuation multiple to EBITDA, the value of the monitoring contract would be proportional to firm value. Using an EBITDA multiple of five, this proportion would be 40 basis points of firm value per year, which we assess all at once as 0.40×5 years = 2 percent of firm value at exit. In all versions of the model, we use the typical sharing rule and allocate 80 percent of this value to the LPs and 20 percent to the GPs.

D. Model Outputs

Table IV summarizes outputs for the fee model of Section III.A. Panel A gives the results for lifetime fees. As defined earlier, lifetime fees are expressed as nominal sums over lifetime of the fund divided by fund size. For example, $2\% \times 10 = 20\%$ if a constant management fee of 2% was charged on committed capital every year for 10 years. Panel B gives the results for the present value of fees. For the base fund, lifetime fees are 20% and the PV of fees are 16.1% of committed capital.

Table V summarizes the results of simulating present values of the carry model. The top left cell of Panel A.1 shows the results for the base case fund: 20% carry level, carry basis = committed capital, no hurdle return, and 25 investments in the fund. The PV of carried interest for this base case is 8.59. (As with all numbers in Table V, these values are expressed in dollars per $100 of committed capital.) A shift to a hurdle rate of 8 percent (with 100 percent catch-up rate) leads to a reduction of 0.35 in the PV of carry, while a shift to a carry level of 25 percent would increase the PV of carry by 2.69. Panel A.2 shows the results for a VC fund that makes only 15 investments. With this smaller number of investments, the overall fund portfolio is less well-diversified, so the volatility of the portfolio is higher and the option value (carried interest) will be higher.
As compared to the results in Panel A.1, the PV of carried interest increases by between $0.40 and $0.59.

Panels A.3 and A.4 show the results using an investment-capital basis, where invested capital is set to 85 percent of committed capital. In comparing the cells in these panels to their analogues in Panels A.1 and A.2, we can see that the decrease in carry basis leads to increases in the PV of carry that varies between $1.08 and $1.58. Thus, a shift in the carry basis from committed capital to investment capital has approximately half the impact as a 5 percent shift in the carry level.

Panel B of Table V summarizes the results for BO funds. The base case, in the top-left cell of in Panel B-1, has 11 investments, 20% carry level, no hurdle, and a carry basis of committed capital. The PV of carried interest in this base case is $5.88 per $100 of committed capital. This is $2.71 lower than the base case for VC funds (top-left cell of Panel A-1). The drivers of this difference are the higher volatility for VC investments (90 percent vs. 60 percent for BO investments) and the higher pairwise correlation between VC investments (50 percent vs. 20 percent for BO investments). Even though there are fewer BO investments – which tends to increase option value on the portfolio of such investments – the volatility and correlation effects dominate and VC earns a higher PV of carried interest. The remaining cells of Panel B-1 show how the PV of carry is affected by changing one input at a time. A move to an 8 percent hurdle – the most common case – results in a loss of $0.71 in PV of carry. Conversely, an increase of the carry level to 25% -- a level not used by any of our sample firms – would increase PV of carry by $1.78.
Panel B-2 shows how the PV of carry is affected by a switch to 5 investments per fund from the base case of 11. Across all four cells in the panel, this change is worth between $1.08 and $1.61 per $100 of committed capital. Panels B-3 and B-4 provide analogues to Panels B-1 and B-2 using an investment-capital basis, with investment capital set to 85 percent of committed capital. This change is even more important for BO funds than it is for VC funds, with increases in PV of carried interest ranging from $1.49 in the base case (11 investments, no hurdle, and 20% carry) to $2.08 for a carry level of 25%, 5 investments, and an 8 percent hurdle.

Although the PV of carried interest is much lower for BO funds than for VC funds, the former can make up much of this difference in transaction fees. In total, the PV of transaction fees average $3.24 per $100 of committed capital. The median BO fund shares half of these fees with their LPs, with the $1.62 GP allocation making up much of the difference between BO and VC carried interest. Since we do not allow variation in monitoring fees across our sample firms – restricting all firms to return 80 percent of these fees to LPs – the average PV of monitoring fees is only $0.36.

IV. Empirical Results

Using the models from Section III, we estimate the present values of all revenue components for all sample firms. Table VI presents the summary statistics of these components. Panel A presents the results for the VC fund sample; Panel B presents the results for the buyout fund sample. The first few rows of both panels summarize the distributions of revenue per $100 of committed capital. The largest two components of total revenue are management fees and carried interest. For both of these components,
VC funds have higher PV per $100 of committed capital. Overall, the PV of total revenue has a mean of $24.18 per $100 among VC funds and $17.29 per $100 for BO funds.

Although VC funds have a higher unit PV of revenue, BO managers make up for this by raising larger funds than VC managers. As seen in Section II, the median BO fund has $600M in committed capital versus $225M for VC funds. BO managers achieve this larger size without a significant increased in partners and other professionals, so that the measures of revenue per partner and revenue per professional are much higher for BO funds than for VC funds. The bottom rows in Panels A and B demonstrate these differences. The mean level of total revenue per partner is $17.73M for BO funds versus $13.22M for VC funds. Similarly, the mean level of total revenue per professional is $11.58M for BO funds versus $6.87M for VC funds. At the top of the scale, BO funds enjoy an even greater advantage over VC funds.

To further explore these differences we estimate a series of regressions of the form

\[Revenue_{\text{Measure}}_i = \alpha + \beta_1 \text{sequence}_i + \beta_2 \text{TopQ}_i + \text{year dummies} + e_i (6) \]

The dependent variable, \(Revenue_{\text{Measure}} \), refers to any of the measures in Table VI: the present values of management fees, carried interest, transaction fees (for BO funds), and total revenue, with each of these measures normalized in turn by number of partners, number of professionals, and committed capital. \(\text{Sequence} \) is the natural logarithm of the number or previous funds (plus one) by the same firm. \(\text{TopQ} \) is the
number of “top quartile” funds in the most recent four funds raised by the same firm. To benchmark these funds, we combine data from the Investor with industry benchmarks drawn from Private Equity Intelligence (2006) and Venture Economics (2006a and 2006b). We also include year fixed effects to control for any unobserved year-specific factors.

Table VII summarizes the results of these regressions. In each case, we estimate the regressions for the full sample, with separate coefficients on each variable for VC and BO funds. Panel A gives results for revenue measures normalized by the number of partners, Panel B gives results for measures normalized by the number of professionals, and Panel C gives results for measures normalized by committed capital. The coefficient on TopQ is not significant in any of the specifications. The coefficient on sequence – a measure of firm experience – is significant in many of the specifications. In Panel A, the sequence coefficient is positive and significant for both VC and BO funds for both management fees per partner and total revenue per partner, and is significant in the BO regressions for carry per partner and for total variable revenue per partner. In none of the regressions in Panel A are the sequence coefficients significantly different between VC and BO funds.

Panel B summarizes results for revenue measures normalized by the number of professionals. In these regressions, there are many significant differences between BO and VC funds. In both the regressions for carried interest and management fees, the sequence coefficient is positive and significant for BO funds but not for VC funds, and the difference between the BO and VC coefficients is significant at the five percent level. Given these results, it is not surprising that we also find the same pattern in the regression
for total revenue per professional. Taken together with the results in Panel A, it appears that BO firms are able to increase their expected PV of revenue per partner without significantly increasing their non-partner staff, whereas VC firms cannot.

The results of Panel C allow us to gain further insight into these relationships. Here, the revenue measures are normalized by committed capital. While the sequence coefficients are never significant for VC funds, these coefficients are negative and significant for BO funds in the carried interest, management fees and total revenue regressions. In that final case, the BO sequence coefficient is significantly lower than the VC sequence coefficient. Thus, this cross-sectional evidence suggests that BO funds actually decrease their PV of revenue per unit of committed capital as they grow more experienced.

BO funds make up for this lower unit revenue by raising ever larger funds, as demonstrated in Panel D. In this panel, we use measures of size (rather than revenue) as the dependent variable, with the same regressors as in the previous panels. The first column shows results using the log of committed capital as the dependent variable. While the sequence coefficients are positive and significant for both BO and VC funds, the BO coefficients are more than twice as large as the VC coefficients, a difference that is significant at the one percent level. As might be expected from the previous results, the differences are even larger when we use the log of committed capital per professional as the dependent variable, with the sequence coefficient for BO funds more than three times the size of its VC counterpart.

Overall, these results suggest that the BO and VC businesses are quite different. The LP community is apparently willing to let BO funds grow significantly larger with
experience. While this increased size leads to downward pressure on expected revenue per unit of committed capital, the BO managers can more than make up for this loss by increasing fund size without requiring much additional staff. In contrast, VC managers, while able to increase their fund size somewhat, also need to add staff at nearly the same rate. In untabulated tests, we find that VC firms add an additional professional for each additional $100M under management; BO funds add an additional professional for each additional $200M under management.

V. Conclusions

This paper analyzes the economics of the private equity industry using a novel model and dataset. We obtain data from a large investor in private equity funds, with detailed records on 249 funds raised between 1992 and 2006. Fund managers earn revenue from a variety of fees and profit-sharing rules. We build a model to estimate the expected revenue to managers as a function of these rules, and we test how this estimated revenue varies across the characteristics of our sample funds. We find major differences between venture capital (VC) funds and buyout (BO) funds – the two main sectors of the private equity industry. In general, BO fund managers earn lower revenue per managed dollar than do managers of VC funds, but nevertheless these BO managers have substantially higher present values for revenue per partner and revenue per professional than do VC managers. Furthermore, BO managers build on their prior experience by raising larger funds, which leads to significantly higher revenue per partner and per professional, despite the fact that these larger funds have lower revenue per dollar. Conversely, while
prior experience by VC managers does lead to higher revenue per partner in later funds, it
does not lead to higher revenue per professional. Taken together, these results suggest
that the BO business is more scalable than the VC business.
References

Kaplan, Steven, 1999, Accel VII, Mimeo.

Litvak, Kate, 2004, Venture capital limited partnership agreements: Understanding compensation arrangements, Unpublished working paper, University of Texas at Austin.

Phalippou, Ludovic and Oliver Gottschalg, 2006, Performance of Private Equity Funds, Unpublished working paper, University of Amsterdam.

Table 1
Sample Summary Statistics

This table presents sample summary statistics for the 249 VC and BO funds in our sample. Panel A gives the data on the 98 VC funds and Panel B gives the data on the 151 BO funds. “Size” is the amount of committed capital in $ millions. “First fund dummy” is 1 if the fund is the first fund for which the management firm is raising public money (not captive money), and 0 otherwise. “# of past funds” is the number of funds that the management firm has raised prior to the current fund. “Firm age” is the difference between the vintage year of the firm’s first fund and the vintage year of the current fund. “# of partners” is the number of partners in the management firm. “# of professionals” is the sum of the number of partners and the number of non-partner investment professionals in the management firm. “# of investments” is fund size divided by the expected size of investments.

<table>
<thead>
<tr>
<th>Panel A: Venture capital fund characteristics (98 funds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mean 25% median 75%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Size $320 $100 $225 $394</td>
</tr>
<tr>
<td>First fund dummy 0.44</td>
</tr>
<tr>
<td># of past funds 1.72 0 1 3</td>
</tr>
<tr>
<td>Firm age (years) 4.58 0 3 8</td>
</tr>
<tr>
<td># of partners 4.91 3 4 6</td>
</tr>
<tr>
<td># of professionals 11.43 7 10 13</td>
</tr>
<tr>
<td># of investments 25.20 15 20 31.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Buyout fund characteristics (151 funds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mean 25% median 75%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Size $1,203 $300 $600 $1,500</td>
</tr>
<tr>
<td>First fund dummy 0.30</td>
</tr>
<tr>
<td># of past funds 1.80 0 1 3</td>
</tr>
<tr>
<td>Firm age (years) 6.32 0 5.5 11</td>
</tr>
<tr>
<td># of partners 6.01 3 5 7</td>
</tr>
<tr>
<td># of professionals 18.11 9 13 24</td>
</tr>
<tr>
<td># of investments 13.99 8.75 12 16.67</td>
</tr>
</tbody>
</table>
Table II
Fund Terms

This table presents summary statistics on partnership terms for the VC and BO funds raised in the 1992-2006 period. “Initial fee level” is the level of annual management fees as the percentage of the fund’s committed capital at the beginning of the fund’s life. “% of funds changing basis after investment period” is the proportion of funds that changes its fee basis from committed capital to (net) invested capital after the completion of the investment period (which is typically 5 years for a 10-year fund). “% of funds changing fee level after investment period” is the proportion of funds that changes its fee level from its initial fee level after the completion of the investment period. “% of funds changing both basis and level” is the proportion of funds that changes both its fee basis and fee level after the investment period. “carry level (%)” is the level of carried interest as the percentage of the fund’s net profit” “% of funds requiring return of fees before carry” is the proportion of funds that uses committed capital as its carry basis (as opposed to investment capital). “% of funds with hurdle return” is the proportion of funds that entitles LPs to a pre-specified level of hurdle return before carried interest is paid to GPs. “Hurdle level (%)” is the level of annual hurdle return for those funds which have hurdle returns.

<table>
<thead>
<tr>
<th></th>
<th>VC</th>
<th>Buyout</th>
</tr>
</thead>
<tbody>
<tr>
<td># of funds with Initial fee level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater than 2%</td>
<td>44</td>
<td>14</td>
</tr>
<tr>
<td>equal to 2%</td>
<td>46</td>
<td>60</td>
</tr>
<tr>
<td>less than 2%</td>
<td>8</td>
<td>77</td>
</tr>
<tr>
<td>% of funds changing basis after investment period</td>
<td>42.7%</td>
<td>83.0%</td>
</tr>
<tr>
<td>% of funds changing fee level after investment period</td>
<td>57.9%</td>
<td>46.6%</td>
</tr>
<tr>
<td>% of funds changing both basis and level</td>
<td>16.3%</td>
<td>37.7%</td>
</tr>
<tr>
<td># of funds with carry level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater than 20%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>equal to 20%</td>
<td>94</td>
<td>151</td>
</tr>
<tr>
<td>less than 20%</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>% of funds requiring return of fees before carry</td>
<td>92.9%</td>
<td>84.1%</td>
</tr>
<tr>
<td>% of funds with hurdle return</td>
<td>45.9%</td>
<td>91.4%</td>
</tr>
<tr>
<td># of funds with hurdle level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater than 8%</td>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>equal to 8%</td>
<td>31</td>
<td>105</td>
</tr>
<tr>
<td>less than 8%</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>
Table III
Management-Fee Model: Inputs and Example

This table presents the key inputs to and an example of the management-fee model. Panel A presents the simulation results of net invested capital as % of investment capital in a 10-year buyout fund with 5-year investment capital. The simulations use the empirically-derived investment pace as inputs and draw random time to exit for each investment from the exponential distribution with exit rate of 0.2 per year. Panel B presents the fee model example for a $100M buyout fund that charges 2% of committed capital for years 1-5, 2% of net invested capital for years 6-10, and has an establishment cost of 1% of fund size. The management fees calculated in Panel B use the net invested capital figures in Panel A as inputs for years 6-10. For example, in year 6 the management fee charge is 2% of 61.5% of $86.23M = $0.79M. The model is solved such that investment capital + lifetime fees + establishment cost sum up to the committed capital of the fund ($100M).

<table>
<thead>
<tr>
<th>Year</th>
<th>Fund year fee basis</th>
<th>Fund year fee level (%)</th>
<th>Fund year fee ($M)</th>
<th>PV of fees ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>committed</td>
<td>2%</td>
<td>$2.00</td>
<td>$2.00</td>
</tr>
<tr>
<td>2</td>
<td>committed</td>
<td>2%</td>
<td>$2.00</td>
<td>$1.903</td>
</tr>
<tr>
<td>3</td>
<td>committed</td>
<td>2%</td>
<td>$2.00</td>
<td>$1.814</td>
</tr>
<tr>
<td>4</td>
<td>committed</td>
<td>2%</td>
<td>$2.00</td>
<td>$1.725</td>
</tr>
<tr>
<td>5</td>
<td>committed</td>
<td>2%</td>
<td>$2.00</td>
<td>$1.646</td>
</tr>
<tr>
<td>6</td>
<td>net invested</td>
<td>2%</td>
<td>$0.79</td>
<td>$0.627</td>
</tr>
<tr>
<td>7</td>
<td>net invested</td>
<td>2%</td>
<td>$0.65</td>
<td>$0.48</td>
</tr>
<tr>
<td>8</td>
<td>net invested</td>
<td>2%</td>
<td>$0.53</td>
<td>$0.38</td>
</tr>
<tr>
<td>9</td>
<td>net invested</td>
<td>2%</td>
<td>$0.44</td>
<td>$0.29</td>
</tr>
<tr>
<td>10</td>
<td>net invested</td>
<td>2%</td>
<td>$0.36</td>
<td>$0.231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>net invested</td>
<td>2%</td>
<td>$0.24</td>
<td>$0.14</td>
</tr>
<tr>
<td>12</td>
<td>net invested</td>
<td>2%</td>
<td>$0.12</td>
<td>$0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total fees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>committed capital</td>
<td></td>
<td>$12.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>investment capital</td>
<td></td>
<td>$86.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>establishment cost</td>
<td></td>
<td>$100.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>total fees</td>
<td></td>
<td>$100.00</td>
<td></td>
</tr>
</tbody>
</table>

Panel A: Investment and exit pace
Panel B: Fee model example
Table IV
Management-Fee Model: Outputs

This table summarizes outputs of the management-fee model for the base case (neither fee basis nor fee level change) and three alternative cases (fee basis change, fee level change in the post-investment-period, and both basis and level change). Panel A presents the lifetime fees expressed as a percentage of committed capital; Panel B presents the PV of fees expressed as a percentage of committed capital. Lifetime fees are the sum of management fees paid to GP over the lifetime of the fund. A riskfree rate of 5% is used to discount the fees. Fund term and investment period are assumed to be 10 years and 5 years, respectively.

<table>
<thead>
<tr>
<th>Duration</th>
<th>Initial Fee Level</th>
<th>Fee Basis Changes to Invested</th>
<th>Fee Level Goes Down</th>
<th>Both Basis and Level Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.50%</td>
<td>2.00%</td>
<td>2.50%</td>
<td>1.50%</td>
</tr>
<tr>
<td>10</td>
<td>15.0%</td>
<td>20.0%</td>
<td>25.0%</td>
<td>15.0%</td>
</tr>
<tr>
<td>New</td>
<td>1.00%</td>
<td>12.5%</td>
<td>15.0%</td>
<td>22.5%</td>
</tr>
<tr>
<td>Fee</td>
<td>1.50%</td>
<td>NA</td>
<td>17.5%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Level</td>
<td>2.00%</td>
<td>NA</td>
<td>NA</td>
<td>22.5%</td>
</tr>
</tbody>
</table>
Panel B: PV of fees

No fee basis / level change

<table>
<thead>
<tr>
<th>Initial fee level</th>
<th>1.50%</th>
<th>2.00%</th>
<th>2.50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration 10</td>
<td>12.1%</td>
<td>16.1%</td>
<td>20.2%</td>
</tr>
</tbody>
</table>

Fee basis changes to invested

<table>
<thead>
<tr>
<th>Initial fee level</th>
<th>1.50%</th>
<th>2.00%</th>
<th>2.50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>duration 10</td>
<td>8.4%</td>
<td>11.1%</td>
<td>13.8%</td>
</tr>
</tbody>
</table>

Fee level goes down

<table>
<thead>
<tr>
<th>Initial fee level</th>
<th>1.50%</th>
<th>2.00%</th>
<th>2.50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>New 1.00%</td>
<td>10.3%</td>
<td>12.6%</td>
<td>14.9%</td>
</tr>
<tr>
<td>fee 1.50%</td>
<td>NA</td>
<td>14.4%</td>
<td>16.6%</td>
</tr>
<tr>
<td>level 2.00%</td>
<td>NA</td>
<td>NA</td>
<td>18.4%</td>
</tr>
</tbody>
</table>

Both basis and level change

<table>
<thead>
<tr>
<th>Initial fee level</th>
<th>1.50%</th>
<th>2.00%</th>
<th>2.50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>New 1.00%</td>
<td>7.9%</td>
<td>10.1%</td>
<td>12.3%</td>
</tr>
<tr>
<td>fee 1.50%</td>
<td>NA</td>
<td>10.6%</td>
<td>12.8%</td>
</tr>
<tr>
<td>level 2.00%</td>
<td>NA</td>
<td>NA</td>
<td>13.3%</td>
</tr>
</tbody>
</table>
Table V
Carried Interest Model: Outputs

This table presents the simulation results for the PV of carried interest. Panel A summarizes results for VC funds with either 25 or 15 investments, and Panel B summarizes the results for BO funds with either 11 or 5 investments. “Investment capital basis” is set to 85 percent of the committed capital basis. “8% hurdle rate” includes a 100 percent catch-up.

Panel A: Venture Capital Funds

Panel A-1: VC: 25 Investments

<table>
<thead>
<tr>
<th>Committed Capital Basis</th>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$8.59</td>
<td>$11.28</td>
<td></td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$8.24</td>
<td>$10.78</td>
<td></td>
</tr>
</tbody>
</table>

Panel A-2: VC: 15 Investments

<table>
<thead>
<tr>
<th>Committed Capital Basis</th>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$8.99</td>
<td>$11.84</td>
<td></td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$8.66</td>
<td>$11.37</td>
<td></td>
</tr>
</tbody>
</table>

Panel A-3: VC: 25 Investments

<table>
<thead>
<tr>
<th>Investment Capital Basis</th>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$9.67</td>
<td>$12.80</td>
<td></td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$9.35</td>
<td>$12.33</td>
<td></td>
</tr>
</tbody>
</table>

Panel A-4: VC: 15 Investments

<table>
<thead>
<tr>
<th>Investment Capital Basis</th>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$10.06</td>
<td>$13.34</td>
<td></td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$9.76</td>
<td>$12.89</td>
<td></td>
</tr>
</tbody>
</table>
Panel B: Buyout Funds

Panel B-1: BO: 11 Investments
Committed Capital Basis

<table>
<thead>
<tr>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$5.88</td>
<td>$7.66</td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$5.17</td>
<td>$6.67</td>
</tr>
</tbody>
</table>

Panel B-2: BO: 5 Investments
Committed Capital Basis

<table>
<thead>
<tr>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$6.96</td>
<td>$9.14</td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$6.35</td>
<td>$8.28</td>
</tr>
</tbody>
</table>

Panel B-3: BO: 11 Investments
Investment Capital Basis

<table>
<thead>
<tr>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$7.37</td>
<td>$9.67</td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$6.72</td>
<td>$8.75</td>
</tr>
</tbody>
</table>

Panel B-4: BO: 5 Investments
Investment Capital Basis

<table>
<thead>
<tr>
<th>Carry Level</th>
<th>20%</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Hurdle</td>
<td>$8.45</td>
<td>$11.18</td>
</tr>
<tr>
<td>8% Hurdle</td>
<td>$7.88</td>
<td>$10.36</td>
</tr>
</tbody>
</table>
This table presents sample summary statistics for revenue estimates. Panel A gives the data on the 98 VC funds and Panel B gives the data on the 151 BO funds. Carry per $100 is the present value of carried interest per hundred dollars under management. Carry per partner is the present value of carried interest per partner in $millions. Carry per professional (partners plus non-partners) is the present value of carried interest per professional in $millions. Other measures are defined similarly. Each measure was constructed using the model described in Section III and reflecting the relevant terms for each fund.

Panel A: Venture capital fund characteristics (98 funds)

<table>
<thead>
<tr>
<th>Present Value of</th>
<th>mean</th>
<th>25%</th>
<th>median</th>
<th>75%</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mgmt Fees per $100</td>
<td>$14.80</td>
<td>$12.04</td>
<td>$14.51</td>
<td>$17.62</td>
<td>$7.82</td>
<td>$20.17</td>
</tr>
<tr>
<td>Carry per $100</td>
<td>$9.02</td>
<td>$8.45</td>
<td>$8.67</td>
<td>$9.35</td>
<td>$7.28</td>
<td>$14.07</td>
</tr>
<tr>
<td>Revenue per $100</td>
<td>$24.18</td>
<td>$21.17</td>
<td>$23.65</td>
<td>$26.97</td>
<td>$16.43</td>
<td>$33.42</td>
</tr>
<tr>
<td>Mgmt Fees per Partner</td>
<td>$7.87</td>
<td>$2.95</td>
<td>$6.12</td>
<td>$9.33</td>
<td>$0.76</td>
<td>$50.19</td>
</tr>
<tr>
<td>Carry per Partner</td>
<td>$5.14</td>
<td>$1.95</td>
<td>$3.52</td>
<td>$6.83</td>
<td>$0.64</td>
<td>$35.70</td>
</tr>
<tr>
<td>Revenue Per Partner</td>
<td>$13.22</td>
<td>$4.97</td>
<td>$9.64</td>
<td>$17.10</td>
<td>$1.42</td>
<td>$87.23</td>
</tr>
<tr>
<td>Mgmt Fees per Professional</td>
<td>$4.10</td>
<td>$1.78</td>
<td>$3.12</td>
<td>$5.05</td>
<td>$0.41</td>
<td>$23.05</td>
</tr>
<tr>
<td>Carry per Professional</td>
<td>$2.67</td>
<td>$1.09</td>
<td>$1.93</td>
<td>$3.38</td>
<td>$0.34</td>
<td>$16.16</td>
</tr>
<tr>
<td>Revenue Per Professional</td>
<td>$6.87</td>
<td>$2.94</td>
<td>$5.42</td>
<td>$8.75</td>
<td>$0.77</td>
<td>$39.72</td>
</tr>
</tbody>
</table>

Panel B: Buyout firm characteristics (151 funds)

<table>
<thead>
<tr>
<th>Present Value of</th>
<th>mean</th>
<th>25%</th>
<th>median</th>
<th>75%</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mgmt Fees per $100</td>
<td>$10.08</td>
<td>$8.48</td>
<td>$10.09</td>
<td>$11.78</td>
<td>$3.15</td>
<td>$17.98</td>
</tr>
<tr>
<td>Carry per $100</td>
<td>$5.59</td>
<td>$5.12</td>
<td>$5.46</td>
<td>$6.05</td>
<td>$4.40</td>
<td>$7.62</td>
</tr>
<tr>
<td>Trans. Fees per $100</td>
<td>$1.26</td>
<td>$0.00</td>
<td>$1.62</td>
<td>$1.62</td>
<td>$0.00</td>
<td>$3.24</td>
</tr>
<tr>
<td>Revenue per $100</td>
<td>$17.29</td>
<td>$14.97</td>
<td>$17.25</td>
<td>$19.29</td>
<td>$8.47</td>
<td>$27.20</td>
</tr>
<tr>
<td>Mgmt Fees per Partner</td>
<td>$10.14</td>
<td>$4.01</td>
<td>$7.50</td>
<td>$12.62</td>
<td>$0.59</td>
<td>$68.36</td>
</tr>
<tr>
<td>Carry per Partner</td>
<td>$6.01</td>
<td>$2.17</td>
<td>$4.23</td>
<td>$7.28</td>
<td>$0.37</td>
<td>$44.54</td>
</tr>
<tr>
<td>Trans. Fees Per Partner</td>
<td>$1.19</td>
<td>$0.00</td>
<td>$0.71</td>
<td>$1.41</td>
<td>$0.00</td>
<td>$7.28</td>
</tr>
<tr>
<td>Revenue per Partner</td>
<td>$17.73</td>
<td>$7.74</td>
<td>$12.87</td>
<td>$22.19</td>
<td>$1.63</td>
<td>$127.81</td>
</tr>
<tr>
<td>Mgmt Fees per Professional</td>
<td>$6.60</td>
<td>$2.77</td>
<td>$4.56</td>
<td>$7.33</td>
<td>$0.30</td>
<td>$62.81</td>
</tr>
<tr>
<td>Carry per Professional</td>
<td>$3.88</td>
<td>$1.30</td>
<td>$2.46</td>
<td>$4.35</td>
<td>$0.32</td>
<td>$32.79</td>
</tr>
<tr>
<td>Trans. Fees per Professional</td>
<td>$0.84</td>
<td>$0.00</td>
<td>$0.40</td>
<td>$0.92</td>
<td>$0.00</td>
<td>$11.45</td>
</tr>
<tr>
<td>Revenue Per Professional</td>
<td>$11.58</td>
<td>$4.48</td>
<td>$7.51</td>
<td>$13.14</td>
<td>$1.23</td>
<td>$97.85</td>
</tr>
</tbody>
</table>
Panels A, B, and C of this table summarize the results of multivariate regressions of various revenue measures on proxies of managers' past success. (Equation (6) in the text.) The revenue measures are the present values of management fees, carried interest, transaction fees (for BO funds), and total revenue, with each of these measures normalized in turn by number of partners (Panel A), number of professionals (Panel B), and committed capital (Panel C). Log (# of top quartile funds) is the number of top quartile performing funds out of the most recent four funds raised by the same firm. To benchmark these funds, we combine data from The Investor with industry benchmarks drawn from Private Equity Intelligence (2006) and Venture Economics (2006a and 2006b). Log(sequence) is the natural logarithm of the number or previous funds (including the current fund) by the same firm. Panel D summarizes results of estimating (6) using measures of fund size as the dependent variable. These measures are the log of committed capital, and the log of committed capital normalized by the number of partners and by the number of professionals. All regressions also include year fixed effects. *, **, and *** indicate statistical significance at the ten percent, five percent, and one percent levels, respectively.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Per-Employee Revenue Measure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>carry per employee</td>
<td>transaction fees per employee</td>
</tr>
<tr>
<td>log(sequence) *VC dummy (β_{VC})</td>
<td>0.5602</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.6805)</td>
<td>(0.9224)</td>
</tr>
<tr>
<td>*BP dummy (β_{BO})</td>
<td>2.9928</td>
<td>0.2636</td>
</tr>
<tr>
<td></td>
<td>(0.6737)**</td>
<td>(0.5915)</td>
</tr>
<tr>
<td>log(# of top-quartile funds) *VC dummy</td>
<td>(0.0503)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(1.3258)</td>
<td>(1.7971)</td>
</tr>
<tr>
<td>*BP dummy</td>
<td>(0.4067)</td>
<td>0.5034</td>
</tr>
<tr>
<td></td>
<td>(1.0615)</td>
<td>(0.9319)</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>constant term</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>p-values for $H_0: \beta_{BO}-\beta_{VC}=0$</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>R²</td>
<td>0.58</td>
<td>0.13</td>
</tr>
<tr>
<td>N of observations</td>
<td>221</td>
<td>135</td>
</tr>
</tbody>
</table>
Panel B: Per-Professional Revenue Measure

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>carry per professional</th>
<th>transaction fees per professional</th>
<th>total variable revenue per professional</th>
<th>management fees per professional</th>
<th>total revenue per professional</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(sequence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*VC dummy (β_{VC})</td>
<td>0.5602</td>
<td>-</td>
<td>0.5602</td>
<td>0.9465</td>
<td>1.5068</td>
</tr>
<tr>
<td>(0.6805)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*BO dummy (β_{BO})</td>
<td>2.9928</td>
<td>0.2636</td>
<td>3.2564</td>
<td>4.0741</td>
<td>7.4172</td>
</tr>
<tr>
<td>(0.6737)**</td>
<td>(0.5915)***</td>
<td>(0.9131)***</td>
<td>(1.0555)***</td>
<td>(1.8061)***</td>
<td></td>
</tr>
<tr>
<td>log(# of top-quartile funds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*VC dummy</td>
<td>-0.0503</td>
<td>-</td>
<td>-0.0503</td>
<td>-0.8739</td>
<td>-0.9242</td>
</tr>
<tr>
<td>(1.3258)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*BO dummy</td>
<td>-0.4067</td>
<td>0.5034</td>
<td>0.0967</td>
<td>-1.0003</td>
<td>-1.5541</td>
</tr>
<tr>
<td>(1.0615)</td>
<td>(0.9319)</td>
<td>(1.4387)</td>
<td>(1.6660)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year F.E.	Yes	Yes	Yes	Yes	Yes
constant term	Yes	Yes	Yes	Yes	Yes
p-values for H$_0$: β_{BO}-β_{VC}=0	0.01	-	0.04	0.04	0.02

| R^2 | 0.58 | 0.13 | 0.47 | 0.57 | 0.58 |
| N of observations | 221 | 135 | 221 | 219 | 219 |

Panel C: Per-dollar Revenue Measure

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>carry per $</th>
<th>transaction fees per $</th>
<th>total variable revenue per $</th>
<th>management fees per $</th>
<th>Total revenue per $</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(sequence)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*VC dummy (β_{VC})</td>
<td>-0.0005</td>
<td>-</td>
<td>-0.0005</td>
<td>0.0029</td>
<td>0.0024</td>
</tr>
<tr>
<td>(0.0012)</td>
<td></td>
<td></td>
<td>(0.0153)</td>
<td>(0.0069)</td>
<td>(0.0073)</td>
</tr>
<tr>
<td>*BO dummy (β_{BO})</td>
<td>-0.0023</td>
<td>-0.0038</td>
<td>-0.0061</td>
<td>-0.0185</td>
<td>-0.0219</td>
</tr>
<tr>
<td>(0.0013)*</td>
<td>(0.0201)</td>
<td>(0.0159)</td>
<td>(0.0072)**</td>
<td>(0.0075)*****</td>
<td></td>
</tr>
<tr>
<td>log(# of top-quartile funds)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*VC dummy</td>
<td>0.0036</td>
<td>-</td>
<td>0.0036</td>
<td>-0.0059</td>
<td>-0.0023</td>
</tr>
<tr>
<td>(0.0025)</td>
<td></td>
<td></td>
<td>(0.0318)</td>
<td>(0.0144)</td>
<td>(0.0151)</td>
</tr>
<tr>
<td>*BO dummy</td>
<td>0.0002</td>
<td>0.0182</td>
<td>0.0184</td>
<td>-0.0086</td>
<td>-0.0083</td>
</tr>
<tr>
<td>(0.0018)</td>
<td>(0.0292)</td>
<td>(0.0231)</td>
<td>(0.0104)</td>
<td>(0.0110)</td>
<td></td>
</tr>
</tbody>
</table>

Year F.E.	Yes	Yes	Yes	Yes	Yes
constant term	Yes	Yes	Yes	Yes	Yes
p-values for H$_0$: β_{BO}-β_{VC}=0	0.32	-	0.80	0.03	0.02

<p>| R^2 | 0.99 | 0.12 | 0.43 | 0.90 | 0.96 |
| N of observations | 246 | 148 | 246 | 244 | 244 |</p>
<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>log (committed capital)</th>
<th>log (committed capital per partner)</th>
<th>log(committed capital per professional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(sequence)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**VC dummy (β_{VC})</td>
<td>0.4077 (0.1359)***</td>
<td>0.2233 0.1446 0.1276</td>
<td></td>
</tr>
<tr>
<td>**BO dummy (β_{BO})</td>
<td>0.9504 (0.1405)***</td>
<td>0.3040 0.1465 0.1263***</td>
<td></td>
</tr>
<tr>
<td>log(# of top-quartile funds)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**VC dummy</td>
<td>0.1832 (0.2821)</td>
<td>0.0223 0.2739 0.2485</td>
<td></td>
</tr>
<tr>
<td>**BO dummy</td>
<td>(0.0064)</td>
<td>0.0045 0.2180 0.1989</td>
<td></td>
</tr>
</tbody>
</table>

Year F.E. | Yes | Yes | Yes |
constant term | Yes | Yes | Yes |
p-values for H_0: $\beta_{BO}=\beta_{VC}$ | 0.006 | 0.390 | 0.070 |

R^2 | 0.9810 | 0.9661 | 0.9614 |
N of observations | 246 | 203 | 221 |
price = value for passive investor: $1

price break or selection ability = $a

value add = $b

price to PE fund = $1 - a

price = value for passive investor: $1

LP value = (1 - GP%) * (1 + b)

LP value = (1 - a) + management fees = LP Value

LP cost = 1 - a + management fees = LP Value

Total value = V = $1 + b = GP value + LP value

GP value = GP% * (1 + b)

E(a + b) = E(management fees + GP value)

Figure 1: Equilibrium Framework for Private Equity Funds