Legal Protection in Retail Financial Markets*

Bruce Ian Carlin†
Simon Gervais‡

November 2, 2008

Abstract

Given the importance of sound advice in retail financial markets and the fact that financial institutions outsource their advice services, how should consumer protection law be set to maximize social welfare? We address this question by posing a theoretical model of retail markets in which a firm and a broker face a bilateral hidden action problem when they service clients in the market. All participants in the market are rational, and prices are set based on consistent beliefs about equilibrium actions of the firm and the broker. We characterize the optimal law, and derive how the legal system splits the blame between parties to the transaction. We also analyze how complexity in assessing clients and conflicts of interest affect the law. Since these markets are large, the implications of the analysis have great welfare import.

*We would like to thank Tony Bernardo, Doug Diamond, Denis Gromb, Raghu Rajan, Adriano Rampini, and Andrei Shleifer for helpful discussions at the inception of this project. Also providing useful comments and suggestions were Brendan Daley, Rachel Kranton, Rich Mathews, as well as seminar participants at Duke University (law school and economics department), UCLA, the University of Miami, and the UBC Summer Finance Conference. All remaining errors are of course the authors’ responsibility.

†Anderson School of Management, University of California, Los Angeles, 110 Westwood Plaza Suite C519, Los Angeles, CA 90095, bruce.carlin@anderson.ucla.edu, (310) 825-7246.

‡Fuqua School of Business, Duke University, One Towerview Drive, Durham, NC 27708-0120, sgervais@duke.edu, (919) 660-7683.
1 Introduction

Retail financial markets are unique in that the majority of consumers who participate have an incomplete understanding of the products that are available and are generally uninformed about prices in the industry (e.g., NASD Literacy Survey, 2003). In fact, in the language of the Securities Act of 1933, public investors are described as those who are “unable to fend for themselves.” Participation at the household level, therefore, not only involves having access to good quality opportunities, but also entails being directed toward the best alternatives.

There is no clear evidence that advice increases welfare, however (e.g., Bergstresser, Chalmers and Tufano, 2007). As argued by Bolton, Freixas and Shapiro (2007) and Carlin (2008), this may be due to conflicts of interest and is likely to be a significant cause of decreased faith in the market (e.g., American subprime mortgage crisis). Given the large size of retail markets, protecting consumers who are “unable to fend for themselves” is not only an important duty of the law, but also a key driver of participation in the market and economic growth. Strikingly, though, there has been a paucity of academic work studying optimal regulation in such markets, especially from a theoretical perspective.

In this paper, we provide a theoretical analysis of consumer protection laws and address the following questions: What characterizes optimal consumer protection laws? Who should be held accountable when consumers are wronged in financial markets? How does the difficulty in assessing a consumer’s needs affect the penalties that are imposed on the firm and its representatives? How may the law optimally circumvent conflicts of interest when they arise?

Two stylized facts about retail financial markets make addressing these questions interesting and challenging. First, financial institutions frequently outsource their advice services to brokers. Indeed, the majority of financial products are sold through intermediaries. For example, only 10% of mutual funds are purchased directly from financial institutions (Investment Company Institute July 2003). This means that when a household investor is wronged in the market, two parties are potentially culpable: the producer and a representative of the firm (e.g., an advisor or broker). Thus, any law that is implemented must take into account the potential actions of the producer of the product itself (e.g., quality and transparency choices), the actions of the advisors in placing clients into those instruments (e.g., irresponsible advice), and the contractual agreements that are present between these parties.

The second stylized fact is that assigning blame to either party is an imperfect process. Advisors can make honest mistakes when assessing the needs of clients. Indeed, despite their good intentions,
it may be difficult for them to match consumers with financial products. Further, based on the ex post realization that a consumer has been wronged, it is often difficult for the law to identify where the process failed.1 Therefore, the legal system not only serves to realign the incentives of producers and advisors, but must also correctly split blame across all parties in order to be effective ex ante. In doing so, the legal system must anticipate and take into account the effect that a law will have on the contractual incentives and prices that will prevail in equilibrium for the industry.

The model that we analyze proceeds as follows. A single firm produces financial products and distributes them to the public through a broker who provides advice service to potential clients. The firm has a responsibility to provide good quality opportunities for clients, and higher quality increases the chances that consumers benefit from making a purchase. The broker’s job is to sort clients and make recommendations based on a noisy signal about their type. We consider two kinds of recommendations: advice about whether to participate in the market and advice about how to participate in the market (i.e., product recommendations). How the firm and the broker fulfill these responsibilities is unobservable and non-verifiable, and so market participants face the coordination problems that arise in settings with bilateral hidden action.2

The government sets a law that holds the firm and the broker responsible when a consumer is wronged. This may occur if a consumer is incorrectly advised to participate in the market or if the consumer is directed to inappropriate choices when they make a purchase. For example, the former might occur when an individual purchases a house and enters into a mortgage when they do not have the income to support the loan. The second might occur when the consumer is directed towards an adjustable rate mortgage as opposed to a fixed rate instrument (i.e., the wrong product). In the model, the penalty that the law dictates is set optimally based on the incentives that the firm and the broker are anticipated to have when choosing their optimal strategies. As such, prices in the market arise from consumers’ rational expectations about the optimal actions of the firm and the broker, the law that is set to protect their interests, and their expectations about their own type.

In equilibrium, in the absence of penalties (i.e., the absence of law), neither the firm nor the broker can commit to provide quality or advice. Since consumers are rational, prices drop, and minimal economic surplus is realized. This motivates an analysis of the optimal law.

When the legal system imposes penalties, the firm improves the quality of its products and the broker provides more thorough advice. At the same time, however, the broker and the firm have

1It may even be difficult for the law to determine whether or not a customer was wronged to begin with, as the performance risk of the product may lead to bad outcomes even for customers who are fit for it ex ante.

2Similar settings of bilateral moral hazard are identified and discussed by Levmore (1993).
a tendency to free-ride on each other’s effort provision. Increasing penalties (blame) to each party not only increases their own effort provision, but also decreases their counterparty’s incentives to offer better services. For example, as penalties induce the firm to offer higher quality products, the marginal benefit of providing advice decreases. Likewise, the broker’s decision to offer more advice decreases the number of sales made in the market, and lowers the marginal benefit for the firm to invest in offering quality. The law must then consider not only the direct effect that penalties have on the firm’s or broker’s actions, but also the indirect effect they have because of free-riding.

The optimal law is set to maximize total welfare in the market. We show that the total penalty imposed not only makes a wronged consumer whole, but awards them punitive damages. This holds for laws governing inappropriate participation in the market, as well as for those governing poor product choice. The result implies that insurance alone does not maximize welfare in the market. That is, a law that makes a wronged consumer whole, but does not punish the firm or broker further, does not achieve first-best quality and advice.

The difficulty that a broker experiences in assessing his clients’ needs not only impacts the optimal actions of the firm and the broker, but also affects the optimal law. We model this difficulty as a tendency for the broker to make advising errors. As the probability of making such errors increases, the broker has a lower incentive to give advice. This arises because the marginal benefit of doing so drops and the broker is more willing to take his chances by selling products to all-comers (as opposed to sorting them). In contrast, as the probability of errors rises, the firm has a greater incentive to provide quality because higher quality increases the chances that consumers are properly served. The effect that such errors has on the optimal law is to penalize the broker more when assessment is more precise. Indeed, if sorting consumers were an easy task, this would make it more likely to be the broker’s fault when a consumer is wronged in the market. Likewise, if sorting consumers is more difficult, the law places more relative burden on the firm to produce quality in the first place.

For most of the analysis, we assume that consumers cannot circumvent the broker and ignore their advice. We extend our analysis to relax this assumption and consider the optimal law when the broker does not act as a gate-keeper per se. In that case, the optimal law cannot achieve the same first-best outcome by including punitive damages, since such payoffs would cause the value of advice to deteriorate. The optimal law then involves an insurance-type remuneration in which a wronged consumer is made whole, but is not entitled to other damages. The law splits this obligation between the firm and the broker, based on the other parameters in the market.

Finally, we extend our analysis to consider the presence of conflicts of interest in the market.
Specifically, we analyze how sales commissions affect the law that is set and the optimal actions of the firm and the broker. We show that sales commissions cause advice to drop, but induce the firm to produce more quality. The time and effort spent by the broker in his advising function has the negative effect of excluding some consumers from buying the firm’s products. In the presence of commissions, the agent has an incentive to sell more and thus to be negligent in his advising role. Anticipating this, the firm chooses higher quality to avoid the penalties that are associated with such wrongdoing. The optimal law in this setting involves higher penalties for the broker and lower ones for the firm, which helps to circumvent this conflict of interest. This result is consistent with the case law that deals with conflicts of interest and financial intermediaries (e.g., Kumpan and Leyens, 2008).

The analysis in this paper, while of general economic interest, applies more specifically to retail financial markets because of two unique features in this setting. First, because financial products are inherently risky, it is difficult to measure their ex ante suitability based on ex post outcomes. As a result, it is generally implausible to offer warranties on such products, as warranties that protect against performance create easy ex post arbitrage opportunities for buyers. For example, granting a free option to return a portfolio would clearly create insurmountable adverse selection problems, and would make the firm vulnerable to opportunist behavior by buyers disappointed by the portfolio’s performance. Moreover, perfect protection and competitive pricing would essentially transform the portfolio into a risk-free security, making it a redundant investment vehicle. Thus, whereas Spence (1977), Grossman (1981), and Mann and Wissink (1990) suggest that warranties and refunds can increase the surplus generated by transactions, commitment to quality via such mechanisms is next to impossible in retail financial markets. Instead we expect the legal system to play a more significant role in these markets, as is the case in Palfrey and Romer’s (1983) analysis of disputes over product performance between buyers and sellers.

The second feature is that reputation concerns are also unable to induce full commitment to quality or advice, as proposed by Klein and Leffler (1981), Shapiro (1982, 1983) and Allen (1984). The reason is that products and prices in these markets are inherently difficult for consumers to decipher. As a result, consumers often settle on a suboptimal product, as documented by Capon, Fitzsimmons and Prince (1996), Agnew and Szykman (2005), and Choi, Laibson and Madrian (2006), among many others. Moreover, as shown by Ausubel (1991), Jain and Wu (2000),

\[3\] Other relevant papers include Alexander, Jones and Nigro (1998), Sirri and Tufano (1998), Wilcox (2003), Barber, Odean and Zheng (2005), and Choi, Laibson and Madrian (2005). Also note that there exists extensive evidence of significant pricing effects in the market (Ausbuel, 1991; Mitchell, Poterba, Warshawsky and Brown, 1999; Baye and Morgan, 2001; Brown and Goolsbee, 2002; Christoffersen and Musto, 2002; Hortacsu and Syverson, 2004; Green,
Jones and Smythe (2003), and Choi, Laibson and Madrian (2004) in different contexts, these con-
sumers are frequently unable to discriminate among brokers and providers of services, due to various
constraints on their discovery processes (e.g., ability or cost to learn). Finally, the low frequency
with which the average consumer interacts with a financial product provider seriously limits the
efficiency of reputation-building as a disciplining device, especially when the transactions and ex-
periences of other market participants are not publicly observable.4

As such, our paper contributes to a growing theoretical literature on household finance (e.g.,
Carlin, 2008), the work on law and finance (e.g., Shleifer and Wolfenzon, 2002), and the legal
foundations of agency law (e.g., Rasmusen, 2004). We highlight this contribution in the next section
that reviews the related literature. Following that, we set up our benchmark model in Section 3,
and consider the legal system when brokers advise clients as to whether or not to participate in the
market. We start by analyzing the strategic choices of the firms and the brokers, and then derive
and characterize the optimal law that the government sets in order to maximize welfare. We finish
the section by analyzing an extension in which the broker is compensated with sales commissions.
In Section 4, we consider the optimal law that prevails when the advisors job is to help their clients
choose the right product, given that they have already decided to participate. In Section 5, we
relax the assumption that the broker acts as a gate-keeper in the market and compare our results
to those derived in previous sections. Section 6 offers some concluding remarks. The Appendix
contains all the proofs.

2 Related Literature

Our paper contributes to the theoretical literature on household finance, in which rational financial
institutions interact with heterogeneous consumers who rationally participate in the market, but
must make decisions based on a constrained learning process.5 Whereas consumers are assumed to
have incomplete knowledge about prices in the market in Carlin (2008) and about the quality of
products in Carlin and Manso (2008), we assume instead that consumers have limited information
about the appropriateness of a specific financial product for their own situation. In this context,
consumers not only benefit from a higher commitment to quality by the firm, but also from the

4In fact, it could be argued that a legal system is necessary for reputation to form in these markets. That is, given
poor access to information, the presence of law suits acts as a device for reputation to form and get disseminated in
the population. We leave this additional role for the legal system to future research.

5This literature has evolved from the initial insight of Stigler (1961) about price dispersion and the subsequent
consumer models of Shilony (1977), Varian (1980), and Burdett and Judd (1983).
advice of the agent hired by the firm to match products and customers. As in Kronman’s (1978) discussion of voluntary disclosures and in Shavell’s (1994) model of the same problem, the presence of legal obligations changes the agent’s incentives to gather and communicate information that is socially useful. Our analysis adds the aforementioned tensions between the firm and the agent to this problem, characterizes their contractual relationship, and derives the regulation that maximizes economic welfare.\(^6\)

Our paper also adds to the literature on law and finance, which highlights the link between strong legal and financial institutions and economic growth. For example, Shleifer and Wolfenzon (2002) analyze the effects that legal protection has on the type and quality of investments that occur in the market. Similarly, Stulz (2008) shows how strong securities laws that mandate disclosures can significantly impact firms’ access to capital and their value, as suggested by La Porta, Lopez-de-Silanes and Shleifer (2006). This work underscores several empirical observations that there is a strong relationship between legal institutions and economic progress. Indeed, La Porta, Lopez-de-Silanes, Shleifer and Vishny (1997, 1998) document substantial cross-sectional variation in the legal protection that investors receive in different countries, and posit that there exists a positive correlation between government regulation and economic growth. Following them, Levine (1999), Glaeser, Johnson and Shleifer (2001), and Beck, Demirgüç-Kunt and Levine (2005) also argue for this positive relationship. In a similar vein, Levine (1998), Levine, Loayza and Beck (2000), and Haselmann, Pistor and Vig (2008) provide evidence that financial intermediation and the provision of credit are greatly affected by the legal system, while Nunn (2007) shows that the ability of a legal system to enforce contracts is a significant driver of economic activity.\(^7\) Consistent with these empirical observations, the analysis in this paper demonstrates that consumer protection law is necessary for both the preservation and the prosperity of retail financial markets. In this sense, our work complements that of Acemoglu, Antràs and Helpman (2007) who show that strong contract enforcement facilitate the adoption of more advanced technology.

The paper may also be viewed as an economic analysis of agency law (e.g., Rasmusen, 2004). Indeed, following Ross (1973), Jensen and Meckling (1976), and Holmström (1979), economists have focused their study of agency theory on the search for contractual arrangements that realign the incentives of agents with those of the principal, thereby maximizing the production potential and value of the firm. In contrast, and as laid out by Sykes (1984, 1988), the primary objective

\(^{6}\)We ignore the closely related concept of fiduciary duty, which includes but is not restricted to the agent’s responsibility to report his information truthfully to customers. For an economic perspective of fiduciary duty, see Hart (1993).

\(^{7}\)For a comprehensive overview of the literature on law and economic growth, see La Porta, Lopez-de-Silanes and Shleifer (2008).
of legal scholars studying agency law is to determine who is to blame (principal or agent, or both) when an outsider is wronged. As Rasmusen (2004) writes, “for the economist, the agency problem is how to give the agent incentives for the right action; for the lawyer, it is how to ‘mop up’ the damage once the agent has taken the wrong action” (page 370). In this paper, we analyze the interaction of these forces, that is, where the law must take into account incentives within the firm when it assigns blame. To our knowledge, this interaction has not been analyzed or modeled before.\(^8\)

Finally, our paper is probably closest in spirit to recent discussion papers by Barr, Mullainathan and Shafir (2008) and by Lipner and Catalano (2008) about the regulation of home mortgage credit and negligent investment advice respectively. Like us, Barr, Mullainathan and Shafir argue that the complexity of the decisions that consumers are asked to make about mortgages requires a legal system that properly internalizes the incentives, motives and biases of market participants. Similarly, Lipner and Catalano advocate a system of legal responsibility that fills the gaps in existing securities statute and holds brokers and advisors accountable for “negligent misrepresentation.” Our paper complements these papers by providing an economic analysis that formalizes the main ideas, explicitly characterizes the economic forces, and extends their applicability to the entirety of retail financial markets.

3 A Market for Financial Services and Advice

3.1 Model Setup

Consider a risk-neutral financial institution (i.e., a firm, or a principal) that markets an investment product to a unit mass of consumers. Consumers may be of two types: either they are a “high” type (H) in which case they are well-suited for this class of product (say, a particular class of mutual funds) or they are a “low” type (L) in which case they are not. High types derive a positive money-equivalent value of \(\bar{m}\) from owning the product, whereas low types suffer a money-equivalent loss of \(-m\). That is, a high type would be willing to pay as much as \(\bar{m}\) to acquire the product, while a low type would be willing to pay as much as \(m\) to avoid or get rid of the product. Ex ante, consumers

\(^8\)Hiriart and Martimort (2006) study a regulation problem in which the legal system must anticipate the firm’s incentives to undertake environmentally risky activities. The similarity between our problem and theirs is limited to this anticipatory component and the fact that blame is ultimately shared by the firm and its agent. Indeed, the market, the product, the game between the firm and its agent, and the presence of utility-maximizing consumers are all specific to our setting.
are unaware of their own type, but do know that the distribution of types in the population is

\[\tilde{\tau} = \begin{cases} H, & \text{prob. } \phi \\ L, & \text{prob. } 1 - \phi. \end{cases} \]

(1)

As such, \(\phi \) may be considered an ex ante measure of the scope of the product for the consumer population. Products with low \(\phi \) are more specialized, whereas products with higher \(\phi \) have widespread use. Consumers have consistent beliefs about the market, and we set \(\phi \bar{m} - (1 - \phi)\bar{m} = 0 \) so that without any other information (e.g., advice), consumers are not willing to pay anything for the product.\(^9\)

When the firm produces the good, it chooses a quality \(q \in [0, 1] \), incurring a cost of \(k_2 q^2 \) in doing so. Higher quality enhances the scope for the product and makes it more likely that consumers derive \(\bar{m} \). Specifically, in addition to the fraction \(\phi \) of consumers who are a natural fit for the product, an additional fraction \(q \) of the remaining consumers will also derive positive value. This quality choice captures the idea that firms can enhance the market for their products by improving their performance. This might involve minimizing the transaction costs that a fund incurs during its operation (e.g., minimizing turnover), efficiently rebalancing a portfolio in response to changing market conditions, limiting the opportunities for employees to steal value from clients (e.g., impose internal monitoring to minimize private benefits), or finding the best traders to oversee assets under management. For example, it may be inappropriate for a certain proportion of consumers to invest in a particular growth fund because of the risk involved. However, the firm can make the fund a worthwhile investment for a larger fraction of consumers by allocating resources to lower transaction costs and by minimizing turnover, as this boosts the net expected return of the fund and improves its risk-return profile. Of course, some of the remaining consumers might still be better off investing in an alternative investment vehicle. Similarly, some customers may be better off not purchasing a house with an adjustable-rate mortgage, but the firm can improve the terms of the mortgage contract in such a way that fewer innocent consumers end up with an investment they cannot afford.

Sales in the market are intermediated by a risk-neutral broker (i.e., an agent). The broker distributes the product and receives a wage \(w \) from the firm for providing this service.\(^10, 11\) As

\(^9\)We could normalize \(\phi \bar{m} - (1 - \phi)\bar{m} \) to any constant without affecting our results. This particular parametrization eliminates corner solutions that come with uninteresting properties (e.g., negative firm profits).

\(^10\)We assume that the broker attracts clients costlessly through referrals from the firm. Thus, we do not model the moral hazard problem associated with the effort required to attract consumers. This problem is analyzed by Inderst and Ottaviani (2008), and Inderst (2008).

\(^11\)In Section 3.4, we consider an alternative contract in which the firm compensates the broker with sales commissions. As will become apparent there, even though such incentives are necessary for the broker to distribute the
such, there is a division of labor in which the principal of the firm is responsible for producing the
good, while the broker is responsible for providing potential clients with financial advice. More
specifically, the broker’s role is to prevent low-type consumers from purchasing the product. The
broker chooses a level of advice $a \in [0,1]$ and incurs a cost of $\frac{kA}{2}a^2$ in doing so. If $a = 0$, the
agent does not gather any information about any customer, and so cannot provide them with any
useful advice. If $a = 1$, the agent responsibly sorts customers based on his (possibly imperfect)
information about their needs for the product. For any choice of $a \in (0,1)$, the agent provides
valuable advice to a proportion a of the investor population and sells without reservation to the
other fraction $1 - a$. That is, the broker gathers information about types for a customers and, based
on this information, some of these customers are turned away, receiving a payoff of zero.12 All the
other customers purchase the product (and it will be optimal for them to do so in equilibrium).

When the agent gives advice, we assume that he may make mistakes despite his good intentions
to accurately sort consumers. Specifically, for each consumer that the agent advises, he receives a
signal $\tilde{s} = \tilde{\epsilon}\tilde{\tau} + (1 - \tilde{\epsilon})\tilde{\eta}$. The variable $\tilde{\eta}$ is noise that has the same distribution as $\tilde{\tau}$, but whose
realization is independent from $\tilde{\tau}$. The distribution of the random variable $\tilde{\epsilon}$ is given by

$$\tilde{\epsilon} = \begin{cases} 1, & \text{prob. } \gamma \\ 0, & \text{prob. } 1 - \gamma, \end{cases} \tag{2}$$

where $\gamma \in [0,1]$. Therefore, if $\tilde{\epsilon} = 1$ the agent observes a signal that conveys the consumer’s true
type, whereas if $\tilde{\epsilon} = 0$ the agent receives a noisy signal which is equivalent to having no added
information about the consumer’s type. However, because the realization of $\tilde{\epsilon}$ is unobservable, the
agent never knows whether he is in possession of $\tilde{\tau}$ or not. Thus the parameter γ captures the idea
that some financial decisions are complicated and, despite the agent’s goodwill, errors do occur.
When $\gamma = 1$, the agent always observes the consumers’ types with perfect precision. However, when
$\gamma = 0$, effort in giving advice does not improve the chances that consumers are sorted appropriately.
We can also think of $1 - \gamma$ as the difficulty of the agent’s task. For example, financial products that
are especially difficult to match with consumers are characterized by a low γ. In what follows, we
will see that γ not only plays an important role when we analyze the optimal actions of the firm
and the broker, but also when we derive the optimal law.

Because the customers who are not turned away do not know whether the broker has positive
or no information about them, they are all equally eager to buy the product for some price p that
12We implicitly assume here that the advisor acts as a gate-keeper and consumers have no other choice but to heed
their recommendation. Therefore, they cannot bypass the advisor. We relax this assumption in Section 5.
does not exceed their expected payoff from the product. In equilibrium, this price depends on the consumers’ consistent beliefs about the equilibrium actions of the firm and the broker, as well as their bargaining power.13 Hence, prices in the market arise from the fully rational behavior of all parties to the transaction.

By construction in this model, the broker and the firm cannot directly observe each other’s actions when making their optimal choices of a and q. The resulting model is one of bilateral hidden action in which both parties are rational and have consistent beliefs about each other’s equilibrium behavior. The agent’s advice helps to match the investors’ needs with the correct instrument, but the agent is unable to advise consumers about how funds are managed internally within the firm. Likewise, the firm chooses how much resources it expends to add quality to its investment products or services, but cannot oversee the advice that consumers receive when they purchase the product.

Finally, the legal environment is set as follows. The government chooses a law that protects consumers if they purchase a product they should not have purchased and suffer a loss.14 We assume that the legal system is set to maximize total welfare in the market. As such, the law $\mathcal{L} = \{\rho_{A}, \rho_{F}\}$ is the financial burden imposed on the two parties who are responsible for marketing and selling the financial product or service to a consumer: ρ_{A} is paid by the broker and ρ_{F} is paid by the firm.15 Therefore, for each consumer who suffers a loss m after purchasing the product, $\rho_{T} = \rho_{A} + \rho_{F}$ is the total value recovered via the legal system. If $\rho_{T} = \overline{m} + m$, the consumer is said to be made “whole” by the law. If $\rho_{T} > \overline{m} + m$, the consumer is not only made whole, but is also entitled to additional punitive damages.

Note that we deliberately assume that penalties are not affected by the number of consumers who end up suing. Two considerations drive this assumption. First, by making each customer’s penalty independent from the penalties of others, we capture the idea that in reality transactions for financial products and the lawsuits that results from them do not all occur at the same time, as they do in the model. Instead, each consumer can appeal to the court system if and when they are wronged, regardless of what is likely to happen to others down the road. In fact, in this light, our assumption is consistent with that of Inderst and Ottaviani (2008) who consider only one consumer.

13For some of our analysis, it will be convenient to assume that the firm is a monopolist that extracts all consumer surplus, but our results do not depend on this particular split of bargaining power.

14We assume that customers’ types can be verified perfectly in a court of law. This is without loss of generality as, in our setting, imperfect verification could be easily overcome by appropriately scaled penalties.

15Alternatively, the parameters ρ_{A} and ρ_{F} could also be interpreted as expected penalties given the probability that a lawsuit is successful and the damages awarded by the law. For example, it might be that $\rho_{A} = zp_{A}$ where z is the probability that any lawsuit succeeds and p_{A} is the payment to the consumer when it does succeed.
Indeed, given that the firm and agent are risk-neutral, \(a \) and \(q \) then determine the probability that this one consumer buys the product and the probability that he sues, without affecting the analysis. Second, as we show in Section 3.3, treating each customer independently is sufficient for the legal system to recover first-best when customers are obliged to follow the broker’s recommendations.

3.2 Equilibrium Behavior

We begin by calculating the number of sales that are made by the broker and the fraction of consumers who seek remedies because they were wronged in the transaction. We then characterize the equilibrium actions of the firm and the broker. An analysis of the optimal law is contained in Section 3.3.

3.2.1 Equilibrium Sales and Potential Lawsuits

The number of sales made by the firm depends on the agent’s equilibrium choice of advice and the ex ante scope of the product \(\phi \). Since \(1 - a \) of the consumers purchase without being sorted and a fraction \(\Pr\{\tilde{s} = L\} = 1 - \phi \) of the \(a \) consumers advised are deemed not right for the product and steered away from buying, the total number of sales (\(n_s \)) in this market is

\[
 n_s = a \Pr\{\tilde{s} = H\} + (1 - a) = a\phi + (1 - a) = 1 - a(1 - \phi). \quad (3)
\]

By inspection, the total number of sales is increasing in \(\phi \), which is not surprising since sales should increase when the scope for the product is higher. Total sales are decreasing in \(a \) since the goal of advice is to prevent low types from buying. Define \(n_H \) (\(n_L \)) as the number of high (low) types that purchase the product. As such, \(n_H \) is an important source of positive welfare in the market since these are the consumers who gain value from the product. Equally important, though, \(n_L \) not only represents the fraction of consumers who suffer losses, but also measures the fraction who seek remedies through the law. The quantity \(\rho_Tn_L \), which represents the total amount of penalties paid to wronged customers, thus provides a good measure of the size of the legal system. The following proposition computes and characterizes \(n_H \) and \(n_L \).

Proposition 1. *(Sales and Lawsuits)* The number of high types and low types who purchase the product are

\[
 n_H = \phi \left[1 - a(1 - \phi)(1 - \gamma) \right] + q(1 - \phi) \left\{ 1 - a \left[1 - \phi(1 - \gamma) \right] \right\}, \quad (4)
\]

\[
 n_L = (1 - q)(1 - \phi) \left\{ 1 - a \left[1 - \phi(1 - \gamma) \right] \right\}. \quad (5)
\]
The number of high types is increasing in q, but decreasing in a, whereas the number of low types is decreasing in both q and a.

According to Proposition 1, as the firm increases scope for the product (increases quality) while the broker keeps his advising constant, fewer consumers are wronged since the product becomes a match for a larger fraction of consumers. Similarly, as advice in the market increases (keeping q constant), n_L decreases because more consumers who would suffer losses are correctly directed to exit the market. However, advice does have the side effect of decreasing n_H as well. This arises because the broker cannot tell with perfect precision who is right for the product. As such, with some probability he may eliminate consumers from the market who would otherwise have benefitted from making the purchase.

3.2.2 Optimal Broker and Firm Behavior

We begin by considering the optimal behavior of the broker, and restrict $k_F > \frac{m}{\phi\gamma}$ and $k_A > m\phi\gamma$ in what follows.16 The broker is paid a wage w for distributing the product to clients and incurs a cost of $\frac{k_A}{2}a^2$ for giving advice a.17 The broker therefore solves

$$\max_{a \in [0, 1]} w - n_L\rho - \frac{k_A}{2}a^2,$$

or equivalently,

$$\max_{a \in [0, 1]} w - \left((1 - q)(1 - \phi)\left\{1 - a[1 - \phi(1 - \gamma)]\right\}\right)\rho - \frac{k_A}{2}a^2. \quad (6)$$

First-order conditions yield

$$a = \frac{(1 - q)(1 - \phi)\lambda\rho}{k_A}, \quad (7)$$

where $\lambda \equiv 1 - \phi(1 - \gamma)$.

By inspection of (7), the higher the penalties imposed by the law, the higher the advice that is given in the market. Interestingly, though, the higher the quality of the product, the less advising the broker chooses to do. This occurs because the marginal benefit to advice decreases due the fact that clients are more likely to gain positive value from their purchase. This implies a natural tendency for the broker to free-ride on the effort provision of the firm. For lower levels of γ, the broker also tends to advise less. When consumers are difficult to sort, the broker will “take his chances” and sell without reservation to save on the effort cost of advising clients.

16 This assumption is made purely for technical convenience. It guarantees an internal solution to both the firm’s and the broker’s problems. This assumption is sufficient, but not necessary for internal solutions to exist. Avoiding corner solutions is for expositional clarity, but does not qualitatively change the results that follow.

17 As mentioned above, we analyze sales commissions and the incentives they create in section 3.4.
Now, we consider the optimal behavior of the firm, given the price p that forms in the market.\footnote{This price will be further discussed later.} The firm solves
\[
\max_{q \in [0,1]} n_s p - n_L \rho_F - \frac{k_F}{2} q^2 - w,
\]
or equivalently,
\[
\max_{q \in [0,1]} p \left[1 - a(1 - \phi) \right] - \left((1 - q)(1 - \phi) \left[1 - a \left(1 - \phi(1 - \gamma) \right) \right] \right) \rho_F - \frac{k_F}{2} q^2 - w. \tag{8}
\]
First-order conditions yield
\[
q = \frac{(1 - \phi)(1 - a \lambda) \rho_F}{k_F}. \tag{9}
\]
As such, the optimal quality choice of the firm is increasing in ρ_F and is decreasing in a and γ. As the amount of advice rises, there is a natural tendency for the firm to free-ride on the effort provision of the agent. Likewise, as the tendency for the broker to make errors decreases (i.e., as γ increases), the marginal benefit of quality for the firm decreases, as it can rely more heavily on the agent to match customers and products and thereby to reduce the firm’s expected liabilities. Thus, as in the moral-hazard-in-teams problem of Holmström (1982), the firm and the agent free-ride on each other when they make their unobservable choices of quality and advice. Because this free-rider problem is affected by the difficulty of the agent’s task, the equilibrium degree of moral hazard that customers can expect also depends on γ.

Of course, in (7) and (9), a and q are expressed in terms of the other parties’ optimal choice. In the following proposition, we solve for a^* and q^*, the broker’s and firm’s optimal choices in terms of the primitives of the model.

Proposition 2. In equilibrium, the optimal choice of advice is given by
\[
a^* = \frac{(1 - \phi) \lambda \rho_A \left[k_F - (1 - \phi) \rho_F \right]}{k_A k_F - (1 - \phi)^2 \lambda^2 \rho_A \rho_F}, \tag{10}
\]
whereas the optimal amount of quality is
\[
q^* = \frac{(1 - \phi) \rho_F \left[k_A - (1 - \phi) \lambda^2 \rho_A \right]}{k_A k_F - (1 - \phi)^2 \lambda^2 \rho_A \rho_F}. \tag{11}
\]
The firm’s optimal choice of quality q^* is increasing in ρ_F and decreasing in ρ_A, whereas the broker’s choice of advice a^* is increasing in ρ_A and decreasing in ρ_F.

According to Proposition 2, the more the law holds the firm liable for the consumers’ misfortune, the higher the tendency for the firm to add more quality to their product. Likewise, the more the
law penalizes the broker when a consumer is wronged, the higher effort the broker employs in giving sound advice. This has an important effect given the tendency for free-riding among the parties. That is, higher penalties for the firm will cause \(q^* \) to rise, which will make advice less likely. In the same way, raising \(\rho_A \) causes advice to increase, but leads to a lower quality in the market. Each party takes into account the penalties imposed on the other when they make their optimal choices. This will have important implications for the optimal law, which we consider next.

3.3 Investor Protection

We now analyze the optimal law that should be set in this market. We begin by showing that without the law, the sale of financial products does not enhance welfare in the market: quality and advice are zero. Following this discussion, we derive and characterize the optimal law.

Since prices, wages, and penalties are transfers among market participants, total welfare reduces to the value that consumers gain minus the losses that wronged consumers suffer minus the costs of quality and advice.\(^{19}\) Therefore, since the government seeks to maximize welfare, it sets the optimal law by solving the following problem:

\[
\max_{\rho_A, \rho_F} \quad W = n_H \bar{m} - n_L \underline{m} - \frac{k_F}{2} q^2 - \frac{k_A}{2} a^2 .
\]

(12)

As discussed in Section 3.2, \(\rho_A \) and \(\rho_F \) affect the firm’s choice of \(q \) and the broker’s choice of \(a \), and therefore impact the quantities \(n_H \) and \(n_L \).

Suppose indeed that no law exists, so that \(\rho_A = 0 \) and \(\rho_F = 0 \). From (10) and (11), we have \(q^* = 0 \) and \(a^* = 0 \). This implies that the firm and the agent cannot commit to provide quality service to clients in the absence of external incentives to do so. In other words, if customers expect any \(q \) or \(a \) above zero, it is always optimal for the firm and agent to provide them with less than that, as their choices are unobservable. Anticipating this problem, clients are unwilling to pay positive prices for the product, as the ex ante surplus they derive from it is \(\phi \bar{m} - (1 - \phi) \underline{m} = 0 \). Thus the market is fully affected by the lemons problem that consumers face and, as a result, the firm’s value and total welfare are both zero. The following proposition formalizes this finding.

Proposition 3. *(Absence of Law)* Suppose that \(\mathcal{L} = \{\rho_A, \rho_F\} \). Then, \(q^* = a^* = 0 \) and \(W = 0 \).

There are two reasons why retail financial markets depend so critically on the law for both preservation and prosperity. The first reason rests on the fact that financial products and services cannot be sold with warranties. For example, it is implausible for a firm to commit to a return

\(^{19}\)As such, maximizing total welfare in the market does not depend on which party has market power. Whether the firm is a monopolist or there is perfect competition, the optimal law remains the same.
policy on a portfolio without charging a positive price for such a guarantee. A “free” insurance policy like this would clearly create arbitrage opportunities and would make the firm vulnerable to opportunistic behavior by consumers. Therefore, in the absence of such warrants, the law becomes necessary to prevent market breakdown.\footnote{As we will show shortly, providing insurance policies that make consumers whole if they are wronged does not achieve first-best anyway. Rather, the optimal law must include punitive damages as well.} \footnote{In this one-period model, we implicitly ignore reputation effects that refunds and other warranties could have on subsequent buyers. Such effects would clearly complement the legal issues discussed here. Note however that reputation forces depend heavily on the public observability of wrong-doing and refunds, which may themselves require the presence of a legal system.}

The second reason that the law may be necessary is if the social structure and the ability to form public trust in the market is sufficiently challenging without the law. Indeed, as Carlin, Dorobantu, and Viswanathan (2008) show, if the value of social capital and the potential for productivity are sufficiently high, the law may be superfluous and even value destroying. However, in most cases when the market cannot depend on these other forces, some investor protection through the law enhances welfare. Economic growth and prosperity may require legal institutions that allow firms to credibly signal the quality of their products (e.g., Glaeser, Johnson and Shleifer, 2001).

Proposition 3 therefore motivates an analysis of what the optimal law should be as, without government, the presence of the market leaves total welfare unaffected. The following proposition characterizes the optimal law.

Proposition 4. The optimal law $\mathcal{L}^* = \{\rho^*_A, \rho^*_F\}$ is given by

\begin{align}
\rho^*_A &= \frac{\rho^*_F = \bar{m} + \underline{m},}{k_A (\phi \gamma k_F - \lambda \bar{m}) \bar{m}} \\
\rho^*_F &= \frac{k_A (\phi \gamma k_F - \lambda \bar{m}) \bar{m}}{(1 - \phi) \lambda [k_A (k_F - \bar{m}) - (1 - \phi) \lambda \bar{m}^2]. (13)}
\end{align}

The penalty ρ^*_A is strictly increasing in γ.

The equilibrium level of advice and quality induced by $\mathcal{L}^* = \{\rho^*_A, \rho^*_F\}$ is

\begin{align}
a^* &= \frac{(k_A - \phi \gamma \lambda \bar{m}) \bar{m}}{k_A k_F - \lambda^2 \bar{m}^2}, (15) \\
q^* &= \frac{(k_A - \phi \gamma \lambda \bar{m}) \bar{m}}{k_A k_F - \lambda^2 \bar{m}^2}. (16)
\end{align}

By inspection of (14), $\rho^*_A > 0$ given the condition that $k_F > \frac{\bar{m}}{\phi \gamma}$. Since $\rho^*_F = \bar{m} + \underline{m}$, this implies that when a consumer sues for damages, they capture $\rho^*_A + \rho^*_F > \bar{m} + \underline{m}$. So, not only are they made whole through the suit, they are awarded punitive damages for their troubles. Therefore, we observe that when the legal system seeks to optimize welfare in the market, they set a penalty scheme that includes punitive damages.
This implies several things about retail financial markets. First, insurance alone is unlikely to maximize welfare. That is, a promise to make consumers whole when they are wronged (i.e., a promise to offer them $m + m$) does not achieve maximum welfare. Second, consumers who are wronged achieve a better outcome than consumers who were properly served. We revisit this issue in Section 5. Finally, according to Proposition 4, as precision in evaluating consumers rises, the law will make penalties more severe for brokers when a consumer is wronged. This makes intuitive sense as the higher the precision is, the more likely the broker is at fault, given that a consumer is wronged.

3.4 Incentives and Conflicts of Interest

So far, we have considered that the advisor is paid a fixed wage w for distributing the product to consumers. We now consider the possibility for the firm to compensate the agent based on the number of sales. More specifically, suppose that the advisor receives a sales commission of b for each consumer who makes a purchase. Total compensation in this case is $n_s b$, and the problem that the broker faces is

$$\max_{a \in [0,1]} n_s b - n_s \rho_A - \frac{k_A}{2} a^2,$$

or equivalently,

$$\max_{a \in [0,1]} \left[1 - a(1 - \phi) \right] b - (1 - q)(1 - \phi) \left\{ 1 - a \left[1 - \phi (1 - \gamma) \right] \right\} \rho_A - \frac{k_A}{2} a^2. \quad (17)$$

The following proposition characterizes the optimal choices of the firm and the advisor, as well as the optimal law $L^b = \{\rho^b_A, \rho^b_F\}$.

Proposition 5. *(Incentives and the Law)* The optimal advice and quality choices by the broker and the firm are given by

$$a^* = (1 - \phi) \left[\frac{(\lambda \rho_A - b) k_F - \lambda \rho_A \rho_F}{k_A k_F - (1 - \phi)^2 \lambda^2 \rho_A \rho_F} \right], \quad (18)$$

whereas the optimal amount of advice is

$$q^* = (1 - \phi) \frac{k_A - (1 - \phi) \lambda^2 (\rho_A - b)}{k_A k_F - (1 - \phi)^2 \lambda^2 \rho_A \rho_F}. \quad (19)$$

The optimal law in the presence of sales commissions $L^b = \{\rho^b_A, \rho^b_F\}$ is such that $\rho^b_A > \rho^*_A$ and $\rho^b_F < \rho^*_F$.

According to Proposition 5, incentives cause the optimal amount of advice to decrease and the optimal choice of quality to increase. Comparing (18) and (19) to (10) and (11) in Section 3.2, we
can see that
\[a_b = a_w - \frac{(1 - \phi)k_Fb}{k_F - (1 - \phi)2\lambda^22\rho_F}, \]
\[(20) \]
and
\[q_b = q_w + \frac{(1 - \phi)\lambda b}{k_F - (1 - \phi)2\lambda^22\rho_F}, \]
\[(21) \]
where \(q_k \) and \(a_k \) are the quality and advice for each form of compensation \(k \in \{ b, w \} \). This implies that there exists a conflict of interest in which the advisor will look the other way when consumers place purchase orders. So while incentives are clearly required for advisors to distribute the product, such commissions may indeed make advisors less likely to do so responsibly. Of course, the firm takes this into account when it chooses \(q \). When there are conflicts of interest, the firm provides more quality to protect itself and avoid the penalties that would ensue due to the broker’s careless recommendations. The government also takes this into account when devising the optimal legal system, relieving the firm a bit from responsibility and placing more of the blame on the advisor when consumers are wronged. This is consistent with the case law that deals with conflicts of interest and financial intermediaries (e.g., Kumpan and Leyens, 2008).

4 Advice About Product Selection

So far in our model, the broker’s advice has been limited to a participation decision by customers. That is, the broker can instruct customers as to whether or not the firm’s one product is good for them or not. In reality, brokers fulfill other roles vis-à-vis the firm’s clients. One important role is in providing advice about the choice of product. Indeed, it is often the case that the firm offers several products that its clients can choose from, and it is then the broker’s job to match each consumer with the right product for his specific situation. For example, a mutual fund family that offers multiple funds with various risk characteristics will rely on brokers to guide customers towards the fund that is appropriate for each of them. Similarly, a lender will rely on a mortgage broker to advise customers in terms of the appropriate instrument to finance a house purchase (e.g., an adjustable rate mortgage versus a fixed-rate mortgage). In this section, we modify the model of section 3 to account for this additional function of brokers. As we show, the results derived so far still hold, but the new model uncovers a few additional insights into the firm-broker relationship.

4.1 Model Setup

Suppose that the firm now markets a continuum of investment products, \(i \in [0, 1] \), to the unit mass of consumers. Each consumer is naturally well-suited for a subset of measure \(\phi \) of these
Figure 1: These figures show the set $[0, 1]$ of all the firm’s products in a circle. Products are labeled between zero and one as we move counter-clockwise along the circle’s circumference. In figure (a), the type τ of a customer determines an interval of products I_{τ} for which this customer is a natural match. In figure (b), this interval is expanded by the firm’s choice of quality $q > 0$.

products. More specifically, consumer types are uniformly distributed on $[0, 1]$ and a consumer of type τ is a *match* for the class of products $I_{\tau} = \left[\tau - \frac{\phi}{2}, \tau + \frac{\phi}{2}\right]$, where the subinterval below zero in I_{τ} is remapped to the upper portion of the unit interval; the same customer is a *mismatch* for all the other products. To visualize this, we can think of the unit interval of products as the circumference of a perfect circle, as in Figure 1(a). Each consumer’s type is a point $\tilde{\tau} = \tau$ on the circle’s circumference, with all the point within a distance of $\frac{\phi}{2}$ from τ representing products that are a good match for the customer. For example, a consumer with a long run objective could be a good match for a set of riskier equity funds offered by a fund family. When a customer of type τ is matched with a product in I_{τ}, he derives a positive money-equivalent value of m. When mismatched (i.e., if the product is from $[0, 1] \setminus I_{\tau}$), the same customer suffers a money-equivalent loss of $-m$. As before, consumers are unaware of their own type ex ante, but do know the distribution of types in the population as well as the likelihood of being matched with a product. We also keep assuming that $\phi m - (1 - \phi)\bar{m} = 0$ so that without any other information, consumers are willing to pay at most zero for any of the firm’s products.

The firm and the agent play the same bilateral hidden action game as in Section 3. In this case, the firm’s choice of q expands the set of products that benefit any one customer. Specifically, as shown in Figure 1(b), in addition to the fraction ϕ of products that are a natural fit for a customer, an additional fraction q of the remaining products will allow this consumer to derive \bar{m}. The broker’s role is now to direct customers to specific products offered by the firm, in that his choice of a determines the fraction of customers for whom his information improves the likelihood of a match. More precisely, we assume that for every customer, the agent receives a signal $\tilde{s} = \tilde{c}\tau + (1 - \tilde{c})\tilde{\eta}$,
where
\[
\tilde{\epsilon} = \begin{cases}
1, & \text{prob. } a\gamma \\
0, & \text{prob. } 1 - a\gamma,
\end{cases}
\]
and the variable \(\tilde{\eta} \) is noise that, like \(\tilde{\tau} \), is uniformly distributed on \([0, 1]\), but whose realization is independent from \(\tilde{\tau} \). As before, a larger \(a \in [0, 1] \) allows the agent to observe a customer’s true type more frequently but, when \(\gamma \) is smaller than one, his information can never be perfect.\(^{22}\) Of course, since \(\tilde{s} \) is more likely to be in \(I_{\tilde{\tau}} \) than a random draw from a uniform distribution, the agent’s advice is always to recommend product \(\tilde{s} \) to the consumer.\(^{23}\) Because every product offered by the firm is ex ante identical and because of the symmetry of types across potential buyers, all products sell for the same price, which we still denote by \(p \).

Although we still do not model the agent’s role in attracting customers, we do capture the idea that the advising function displaces some of the agent’s attention and reduces the flow of potential customers. More precisely, we assume that the agent’s effort \(a \) that is directed towards advising customers results in a loss of \(\delta a \) in customer flow, where \(\delta \in [0, 1 - \gamma) \). That is, of the initial mass of customers, only \(n_S = 1 - \delta a \) sales are made by the firm. The other \(\delta a \) customers are assumed to receive a payoff of zero.\(^{24}\) Finally, the legal environment is exactly as before: the government chooses a law that allows customers who are mismatched with a product (and suffer a loss of \(m \)) to recover \(\rho_A \) and \(\rho_F \) from the agent and firm respectively.

4.2 Equilibrium and Results

As mentioned above, the number of sales made by the firm in this new setup depends on the agent’s equilibrium choice of advice and is given by \(n_S = 1 - \delta a \). Also, it is straightforward to verify that the fractions of high types and low types who purchase the product are
\[
n_H = \phi + q(1 - \phi) + a\left[(1 - q)(1 - \phi)(\gamma + \delta) - \delta \right], \quad \text{and} \\
n_L = (1 - q)(1 - \phi)\left[1 - a(\gamma + \delta) \right].
\]
\(^{22}\)To highlight the fact that a fraction \(a \) of consumers receive information that increases their posterior probability of being correctly matched with a financial product, one can write the agent’s signal as \(\tilde{s} = \tilde{\psi}\tilde{\epsilon}\tilde{\tau} + (1 - \tilde{\epsilon})\tilde{\eta} + (1 - \tilde{\psi})\tilde{\eta} \), where \(\tilde{\psi} \) is equal to 1 with probability \(a \) and equal to zero otherwise. The analysis is completely unaffected by this alternative representation of \(\tilde{s} \).

\(^{23}\)As before, we initially assume that consumers have no other choice but to heed the agent’s recommendation. That is, they cannot select a product that he does not recommend. We relax this assumption in Section 5.

\(^{24}\)The same setup endogenously arises if we assume that the agent must also exert effort to attract customers and that the agent has a limited effort capital. More specifically, assume that \(1 - \delta \) customers come to the firm if the agent exerts no effort to attract customers, and that an effort of \(\alpha \in [0, 1] \) increases the flow of customers by \(\delta \alpha \). The above setup results if \(\alpha \) can be exerted without any effort cost being incurred by the agent and if his total effort supply, \(a + \alpha \), cannot exceed one. Indeed, the agent then allocates all of his non-advising effort, \(1 - a \), to attracting customers for a total customer flow of \(1 - \delta + \delta(1 - a) = 1 - \delta a \).
As before, an increase in q results in more sales to high types and fewer sales to low types. However, although an increase in a still lowers the numbers of sales to low types, it is possible for advice to have a negative side effect and reduce the number of sales to high types. Indeed, when $\delta > \frac{(1-\rho)(1-\phi)}{\phi+q(1-\phi)}$, the broker’s effort to sort consumers ends up costing the firm many sales. So, although the consumers who buy are better matched, the fact that many of them no longer buy products at all reduces the total number of consumers who benefit from the firm’s product offering.

As before, we need to assume that k_F and k_A are large enough in order to ensure interior solutions. In this case, assuming that $k_F > (1 + \frac{\delta}{\gamma}) \bar{m}$ and $k_A > (\gamma + \delta)\bar{m}$, we can show the agent and the firm choose

$$a = \frac{(1-q)(1-\phi)(\gamma+\delta)\rho_A}{k_A}, \quad \text{and}$$

$$q = \frac{(1-\phi)[1-a(\gamma+\delta)]\rho_F}{k_F}$$

respectively. It is again the case that the agent and firm free-ride on each other: the agent’s choice of advice is decreasing in q, while the firm’s choice of quality is decreasing in a. It is also the case that more information precision (i.e., a larger γ) leads the agent to advise more and the firm to lower quality. The following result, describing the equilibrium choices of a and q, is the analogue to Proposition 2.

Proposition 6. In equilibrium, the optimal choice of quality is given by

$$a^* = \frac{(1-\phi)(\gamma+\delta)[k_F - (1-\phi)\rho_F] \rho_A}{k_A k_F - (1-\phi)^2(\gamma+\delta)^2 \rho_A \rho_F},$$

whereas the optimal amount of advice is

$$q^* = \frac{(1-\phi)[k_A - (1-\phi)(\gamma+\delta)^2 \rho_A] \rho_F}{k_A k_F - (1-\phi)^2(\gamma+\delta)^2 \rho_A \rho_F}.$$

The firm’s optimal choice of quality q^* is increasing in ρ_F and decreasing in ρ_A, whereas the broker’s choice of advice a^* is increasing in ρ_A and decreasing in ρ_F.

Clearly, advice and quality are both zero without a legal system (i.e., when $\rho_A = \rho_F = 0$). Also, as in Proposition 2, a^* is increasing in ρ_A and decreasing in ρ_F, while q^* is increasing in ρ_F and decreasing in ρ_A. Thus increasing the penalties of one party creates the need to further increase the penalties of the other party. As a result, the optimal law again require total penalties to be above $\bar{m} + \bar{m}$, as shown in the following proposition, the analogue to Proposition 4.
Proposition 7. The optimal law \(L^* = \{\rho^*_A, \rho^*_F\} \) is given by

\[
\rho^*_F = m + \overline{m},
\]

\[
\rho^*_A = \frac{k_A \gamma k_F - (\gamma + \delta)\overline{m}}{(1 - \phi)(\gamma + \delta)[k_A(k_F - \overline{m}) - \delta(\gamma + \delta)\overline{m}^2]}.
\]

The penalty \(\rho^*_A \) is strictly increasing in \(\gamma \).

The equilibrium level of advice and quality induced by \(L^* = \{\rho^*_A, \rho^*_F\} \) is

\[
a^* = \frac{[\gamma k_F - (\gamma + \delta)\overline{m}]\overline{m}}{k_A k_F - (\gamma + \delta)^2\overline{m}^2},
\]

\[
q^* = \frac{[k_A - \gamma(\gamma + \delta)\overline{m}]\overline{m}}{k_A k_F - (\gamma + \delta)^2\overline{m}^2}.
\]

The fact that \(\rho^*_T > m + \overline{m} \) in both Propositions 4 and 7 implies that, once a consumer is advised away from the firm’s products or towards a specific financial product, he would rather ignore the advice to gain access to punitive damages. That is, advised consumers prefer the lottery that comes with unrecommended products. Clearly, the legal system will have the intended effect only if consumers cannot bypass the broker to purchase their financial products; that is, the decision to enter the transaction and the choice of product is made for them by the broker. In markets where the advisor cannot act as a gate-keeper, the law derived in Proposition 4 would induce consumers to ignore advice, and therefore decrease the value generated by advice services. In such markets, the government must take this possibility into account when setting the law. We address this consideration carefully in the next section.

5 Heeding Advice and the Law

As pointed out in the previous section, the law is only able to impose severe punitive damages on the firm and advisor as long as consumers are not able to circumvent the advice that they receive from brokers. In this section, we investigate the role of the legal system when brokers cannot act as gate-keepers. Specifically, damages cannot be too great, and the expected payoff to heeding advice must be superior to seeking the lottery-type payoffs that we derived previously.

We perform our analysis using the product selection model of Section 4, as this model facilitates the derivation of closed-form solutions.\(^{25}\) In fact, to make the analysis even more tractable and our results more intuitive, we assume that the agent’s effort to advise does not reduce the flow of customers; that is, we assume that \(\delta = 0 \).

\(^{25}\)We have verified via numerical solutions that the same results also obtain using the model of Section 3.
Assume that the firm’s products sell for \(p \). For a consumer to heed advice, it must be that the payoffs to ignoring advice are lower than the payoffs of following it. Given the information structure of Section 4, a customer following the broker’s advice to buy product \(\tau \) can expect a payoff of \(m \) with probability

\[
\Pr\{\bar{r} \in I_\tau | \bar{s} = \tau\} = \gamma a + (1 - \gamma a)\left[\phi + (1 - \phi)q\right] = \left[\phi + (1 - \phi)q\right] + \gamma a(1 - \phi)(1 - q) \equiv \mu_1.
\]

This customer’s expected utility from buying product \(\tau \) is

\[
E[\tilde{u} | \hat{s} = \tau] = \mu_1 m + (1 - \mu_1)(-m + \rho_A + \rho_F) - p.
\] (33)

If on the other hand the consumer decides not to follow the broker’s advice and to buy a random product \(\tilde{t} \in [0, 1] \), the probability that the product is a match is only

\[
\Pr\{\tilde{r} \in I_{\tilde{t}}\} = \phi + (1 - \phi)q \equiv \mu_0,
\]

and so his expected utility from the transaction is

\[
E[\tilde{u}] = \mu_0 m + (1 - \mu_0)(-m + \rho_A + \rho_F) - p.
\] (34)

A simple comparison of (33) and (34) establishes that the customer follows the broker’s advice if and only if

\[
(\mu_1 - \mu_0)\bar{m} \geq (\mu_1 - \mu_0)(-\bar{m} + \rho_A + \rho_F),
\]

or equivalently,

\[
\rho_A + \rho_F \leq \bar{m} + \bar{m}.
\] (35)

Thus the penalties set by the government cannot exceed the value that is on the line during the purchase. The higher the potential benefit to owning the right product or the loss that may be suffered in a mismatch, the higher the penalties that may be assessed without causing breakdown the advice market to break down. Because \(\rho_A + \rho_F > \bar{m} + \bar{m} \) in Proposition 7, we already know that this condition constrains the government’s welfare maximization problem (in (12)). The following proposition characterizes the optimal law under this constraint.

Proposition 8. (Heeding Advice and Optimal Law) When the broker cannot impose his recommendation on the customers’ choice of product, the optimal law set by the government is given by

\[
\rho_A^* = \frac{k_A k_F \left[(k_F - \gamma \bar{m})(1 + \gamma) - 2\gamma \bar{m}(1 - \gamma) \right] - 2\gamma^3 \bar{m}^2 (k_F - \bar{m}) - Q}{\gamma(1 - \phi)\left[k_A \left[2k_F \gamma(k_F - \gamma \bar{m}) + 2\gamma^2 \bar{m}^2 - k_F \gamma \bar{m}(1 + \gamma) - k_A k_F(1 - \gamma) \right] + (k_A - \gamma \bar{m})Q \right]},
\] (36)

\[
\rho_F^* = \bar{m} + \bar{m} - \rho_A^*.
\] (37)
where
\[Q = \sqrt{k_{A}k_{F}\{k_{A}(1 + \gamma)^2 - 4\gamma\bar{m}\} - 4\gamma^2\bar{m}(k_{F} - \bar{m})}\}. \] (38)

The agent’s penalty \((\rho_{A}^{*}) \), is increasing in \(\gamma \), while the firm’s penalty \((\rho_{F}^{*}) \) is decreasing in \(\gamma \).

An important implication of Proposition 8 is that insurance is the only way to protect consumers in this market; that is, it is optimal to have \(\rho_{A} + \rho_{F} = \bar{m} + \bar{m} \). Penalties that make consumers whole can be assessed, but no punitive damages may be added. Given our discussion in previous sections, this means that the first-best scenario is not achievable in these markets. In other words, when the advisor cannot act as a gate-keeper and customers must effectively be persuaded to use the agent’s advice, optimal quality and advice cannot be reached. This means that freedom in the market leads to lower value creation, a striking result.

Figures 2 and 3 provide us with more insight into the equilibrium of Proposition 8. In these figures, we plot various equilibrium quantities as functions of \(\gamma \) and \(\bar{m} \) respectively. Consistent with Proposition 8, we can see from Figures 2(a) and 2(b) that \(\rho_{A} \) is decreasing in \(\gamma \), while \(\rho_{F} \) is increasing in \(\gamma \): more blame is put on the agent when his task of sorting customer becomes more precise and thus easier. At the same time, more of the consumer surplus that is generated in the market depends on advising as opposed to quality products. Indeed, as we can see from Figures 2(c) and 2(d), \(a \) increases with \(\gamma \), while \(q \) decreases with \(\gamma \). Interestingly, as we can see from Figures 2(e) and 2(f), this does not translate into monotonic relationships of \(n_{H} \) and \(n_{L} \) with \(\gamma \). Instead, the number of matched customers hits a minimum at \(\gamma \approx 0.61 \). That is, more consumers are matched with a product that is appropriate for them when \(\gamma \) is small or when it is large. In the former case, this is because the firm produces more quality; in the latter case, this is because the advice channel is reliable. As shown in Figure 2(g), this translates into a large legal system for intermediate values of \(\gamma \). Finally, let us define \(B \) to be the fraction of consumers who are made better off through the advice channel. Because the firm’s choice of \(q \) implies that \(\phi + (1 - \phi)q \) customers would be appropriately matched with a product if they picked one randomly, we have
\[B = \frac{n_{H}}{\phi + (1 - \phi)q} - 1. \] (39)

Figure 2(h) plots this quantity as a function of \(\gamma \). Clearly, because the broker advises more and because he does so with more accuracy as \(\gamma \) goes up, the fraction of people that benefit from the advice channel increases at a faster rate than \(a \) and \(\gamma \).

Figure 3 shows the same set of equilibrium quantities, but as a function of \(\bar{m} \). In these figures, we set \(\phi = 0.5 \), so that the restriction that \(\phi\bar{m} + (1 - \phi)\bar{m} = 0 \) implies that \(\bar{m} = \bar{m} \). That is, as we
Figure 2: These figures show equilibrium quantities as functions of γ, when the law is constrained to satisfy $\rho_A + \rho_F \leq \bar{m} + \bar{m}$. The parameters used for all figures are $\phi = 0.5$, $\bar{m} = \bar{m} = 1$, $k_A = 2$, and $k_F = 3$.

(a) ρ_A as a function of γ.

(b) ρ_F as a function of γ.

(c) a as a function of γ.

(d) q as a function of γ.

(e) n_H as a function of γ.

(f) n_L as a function of γ.

(g) $n_L \rho_T$ as a function of γ.

(h) B as a function of γ.

increase \bar{m}, it must be the case that \underline{m} increases along with it. In essence therefore, the horizontal axis in all these graphs measures the utility spread between a customer who is matched and one who is mismatched. Indeed, when \bar{m} and \underline{m} are both small, customer cannot benefit much from a match, nor can they be hurt much from a mismatch. As \bar{m} and \underline{m} increase, the gain to a match and the loss to a mismatch both increase at the same rate. Although the firm’s penalty (Figure 3(b)) and provision of quality (Figure 3(d)) increase as the stakes increase for consumers, this is not the case for the agent’s penalty (Figure 3(a)) and advising intensity (Figure 3(c)). Instead, both of these quantities peak for intermediate values of \bar{m}. That is, the agent is not relied upon to create consumer surplus when the stakes are small or when they are large. In fact, although we do not plot this in Figure 3, it is the case that the fraction of the total payment received by mismatched customers, $\frac{\rho A}{\bar{m} + \underline{m}}$, is monotonically decreasing in \bar{m}. Thus, although the agent’s advice would be welcome by consumers who have a lot to gain or lose, it is optimal for the legal system to ensure a good matching process directly via the firm’s choice of quality. As we see from Figures 3(e) and 3(f), this reliance on the firm is quite strong, as every consumer gets matched when $\bar{m} = 1$. As shown in Figure 3(g), the result is a legal system that is small with a small \bar{m} (no point in punishing since there is not much to lose) or a large \bar{m} (the quality is such that every consumer is matched, and so no lawsuits take place). Finally, Figure 3(h) shows that the biggest gains from the advising process occur when the broker’s choice of a is large.

6 Concluding Remarks

Protecting consumers in financial markets who are “unable to fend for themselves” is not only an important duty of the law, but also an important driver of participation in the market and economic growth. In this paper, we characterize the optimal law that exists in markets in which producers of financial markets outsource their advice services.

The model that we analyze is one of bilateral hidden action: firms choose the quality of the goods they produce and brokers advise consumers when they make their purchases. Without the law, neither party can commit to acting in the best interest of consumers, and little of the economic surplus that markets can potentially generate is actually realized. With the law, the two parties tend to free-ride on each other’s effort provision: as the firm commits to higher quality, the broker has a lower incentive to give advice, and vice versa. When financial decisions are more complex and matching consumers with products becomes more difficult, both the firm and the broker add less value in the market.

We show that the optimal law not only makes wronged consumers whole, but provides them
Figure 3: These figures show equilibrium quantities as functions of \bar{m}, when the law is constrained to satisfy $\rho_A + \rho_F \leq \bar{m} + \bar{m}$. The parameters used for all figures are $\phi = 0.5$ (so that $\bar{m} = \bar{m}$), $\gamma = 0.5$, $k_A = 2$, and $k_F = 2$.

\[(a) \rho_A \text{ as a function of } \bar{m}. \]

\[(b) \rho_F \text{ as a function of } \bar{m}. \]

\[(c) a \text{ as a function of } \bar{m}. \]

\[(d) q \text{ as a function of } \bar{m}. \]

\[(e) n_H \text{ as a function of } \bar{m}. \]

\[(f) n_L \text{ as a function of } \bar{m}. \]

\[(g) n_L \rho_T \text{ as a function of } \bar{m}. \]

\[(h) B \text{ as a function of } \bar{m}. \]
with punitive damages. In fact, such a welfare-maximizing legal system achieves first-best quality and advice, whether the broker’s role is to advise clients about their participation in markets or to assist them in choosing specific products. In addition, we show that the use of sales commissions in compensation contracts causes a conflict of interest in which brokers tend to give less advice. The law circumvents this problem by increasing penalties to brokers and decreasing penalties to firms when customers are wronged in the market.

Given the large size of retail financial markets and the recent economic impact of the subprime mortgage crisis in the U.S., we feel that the analysis in this paper has significant welfare import.
Appendix

Proof of Proposition 1

Define \(\hat{n}_H (\hat{n}_L) \) as the number of sales that would be directed toward high (low) type consumers if \(q = 0 \). As such,

\[
\hat{n}_H = a \left\{ \phi \left[\gamma + (1 - \gamma)\phi \right] \right\} + (1 - a)\phi = \phi \left[1 - a(1 - \phi)(1 - \gamma) \right],
\]

and

\[
\hat{n}_L = a \left\{ (1 - \phi)(1 - \gamma)\phi \right\} + (1 - a)(1 - \phi) = (1 - \phi) \left\{ 1 - a[1 - \phi(1 - \gamma)] \right\}.
\]

Since \(n_H = \hat{n}_H + q\hat{n}_L \) and \(n_L = (1 - q)\hat{n}_L \), we can compute the expressions in (4) and (5). Comparative statics follow from straight differentiation. ■

Proof of Proposition 2

In a Nash equilibrium, the agent (the firm) correctly anticipates the firm’s (agent’s) choice of \(q \) (a). Thus their equilibrium choice of \(a \) and \(q \) must solve (7) and (9). This yields (10) and (11). Comparative statics follow from straight differentiation. ■

Proof of Proposition 3

Substituting \(\rho_\Lambda = 0 \) and \(\rho_F = 0 \) into (10) and (11), yields \(q^* = 0 \) and \(a^* = 0 \). From (12), welfare may be expressed as

\[
W = n_H \bar{m} - n_P \bar{m} - \frac{k_F}{2} q^2 - \frac{k_A}{2} a^2.
\]

Since \(n_H = \phi \) and \(n_L = 1 - \phi \) when \(a = 0 \) and \(q = 0 \), and \(\phi \bar{m} - (1 - \phi) \bar{m} = 0 \), we have \(W = 0 \) when \(\rho_\Lambda = 0 \) and \(\rho_F = 0 \). ■

Proof of Proposition 4

The problem in (12) is equivalent to

\[
\max_{a, q} W = n_H \bar{m} - n_L \bar{m} - \frac{k_F}{2} q^2 - \frac{k_A}{2} a^2, \quad (A1)
\]

subject to (10) and (11). In fact, when first-best is attainable, we can simply maximize (A1) with respect to \(a \) and \(q \), and find the penalties \(\rho_\Lambda \) and \(\rho_F \) that make (10) and (11) equal to the first-best values of \(a \) of \(q \). First-order conditions yield

\[
a = \frac{\left[(1 - q)\phi(1 - \gamma) - q(1 - \phi) \right] \bar{m}}{k_\Lambda} \quad (A2)
\]
and
\[q = \frac{1 - a [1 - \phi (1 - \gamma)]}{k_F}. \tag{A3} \]
Solving for \(a \) and \(q \) in these two equations yields (15) and (16). The expressions in (13) and (14) result from equating (10) and (11) with (15) and (16), and solving for \(\rho_F \) and \(\rho_A \). Comparative statics follow from straight differentiation. ■

Proof of Proposition 5

Given the agent’s problem in (17), the first-order conditions for the agent’s and the firm’s maximization problems are
\[a = \frac{(1 - \phi) [1 - (1 - q) \lambda \rho_A - b]}{k_A} \]
and
\[q = \frac{(1 - \phi)(1 - a \lambda) \rho_F}{k_F}. \]
Direct substitution yields (18) and (19). Given the relationships in (20) and (21), and the fact that the law can induce first-best, it must hold that \(\rho_A^b > \rho_A^* \) and \(\rho_F^b < \rho_F^* \). ■

Proof of Proposition 6

In a Nash equilibrium, the agent (the firm) correctly anticipates the firm’s (agent’s) choice of \(q (a) \). Thus their equilibrium choice of \(a \) and \(q \) must solve (25) and (26). This leads to (27) and (28). Simple but tedious differentiation of these two expressions with respect to \(\rho_A \) and \(\rho_F \) completes the proof. ■

Proof of Proposition 7

It is straightforward to verify, along the lines of the proof of Proposition 4, that \(\rho_A^* \) and \(\rho_F^* \) in (29) and (30) are the penalties that make (27) and (28) equal to the first-best values of \(a \) and \(q \) in (31) and (32). Differentiation of \(\rho_A^* \) with respect to \(\gamma \) establishes the last result. ■

Proof of Proposition 8

The government seeks to solve
\[\max_{\rho_A, \rho_F} W = n_H \bar{m} - n_L m - \frac{k_F}{2} q^2 - \frac{k_A}{2} a^2, \]
subject to (27), (28) and \(\rho_A + \rho_F \leq \bar{m} + m \), where \(n_H \) and \(n_L \) are given by (23) and (24). Since we know that first-best cannot be achieved, it is never optimal for the government to set \(\rho_A \) and \(\rho_F \).
such that $\rho_A + \rho_F < \underline{m} + \underline{w}$. As such, the third constraint must be satisfied with equality, that is, $\rho_A + \rho_F = \underline{m} + \underline{m}$ or, using (25) and (26),

$$\frac{ak_A}{(1 - q)(1 - \phi)(\gamma + \delta)} + \frac{qk_F}{(1 - \phi)(1 - a(\gamma + \delta))} = \underline{m} + \underline{w}. \quad (A4)$$

Recall from Proposition 6 that a^* in (27) is increasing in ρ_A and decreasing in ρ_F while q^* in (28) is increasing in ρ_F and decreasing in ρ_A. This implies that both ρ_A and ρ_F must be increased in order to increase a^* without affecting q^* or in order to increase q^* without affecting a^*. Thus the government’s maximization problem is equivalent to

$$\max_{a,q} \quad W = n_{A\bar{m}} - n_{L\bar{m}} - \frac{k_F}{2}q^2 - \frac{k_A}{2}a^2,$$

subject to $a + q = t$, where t solves (A4).

For any given $t > 0$, it is easy to show that the solution to this problem is given by $q = A + Bt$ and $a = -A + (1 - B)t$ with

$$A = \frac{(1 - \gamma)\underline{m}}{k_A + k_F - 2\gamma\underline{m}}, \quad \text{and} \quad B = \frac{k_A - \gamma\underline{m}}{k_A + k_F - 2\gamma\underline{m}}.$$

Using these expressions in (A4) and manipulating yields a quadratic expression in t with a unique positive root. We can use this root to get $a = -A + (1 - B)t$, insert the resulting expression for a in (25), and solve for ρ_A. This yields (36). The solution for ρ_F in (37) comes from the constraint that $\rho_A + \rho_F = \underline{m} + \underline{m}$. ■
References

